Mathematics

# $\int {\frac{2x+5}{x^2+5x-3}dx}$

##### SOLUTION
Let $I=\int { \dfrac { \left( 2x+5 \right) dx }{ { x }^{ 2 }+5x-3 } }$
Let  $log\left| { x }^{ 2 }+5x-3 \right| =Z$
So, on differentiating, we get
$\dfrac { 2x+5 }{ { x }^{ 2 }+5x-3 } dx=dz$
So, $I=\int { dZ } =Z+C=log\left| { x }^{ 2 }+5x-3 \right| +C$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Subjective Hard
Prove that:
$\displaystyle \int_{0}^{\dfrac {\pi}{2}}(2\log \sin x-\log \sin 2x)dx$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
$\int \sin^{-1}\{ \frac{2x+2}{\sqrt{4x^2+8x+13}}\}$
• A. $x\sin^{-1}(\dfrac{2x+2}{\sqrt{8x^2+8x+13}})-\dfrac{3}{4}\ln(4x^2+8x+13)+\tan^{-1}(\dfrac{2x+1}{3})$
• B. $x\sin^{-1}(\dfrac{x+2}{\sqrt{4x^2+8x+13}})-\dfrac{3}{4}\ln(4x^2+8x+13)+\tan^{-1}(\dfrac{2x+1}{3})$
• C. $\sin^{-1}(\dfrac{2x+2}{\sqrt{4x^2+8x+13}})-\dfrac{3}{4}\ln(4x^2+8x+13)+\tan^{-1}(\dfrac{2x+1}{3})$
• D.  $x\sin^{-1}(\dfrac{2x+2}{\sqrt{4x^2+8x+13}})-\dfrac{3}{4}\ln(4x^2+8x+13)+\tan^{-1}(\dfrac{2x+1}{3})$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Hard
Find the value of $\displaystyle\int { \cfrac { 2x+1 }{ \sqrt { { x }^{ 2 }+x+1 } } } dx$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Hard
Evaluate:  $\int \frac { t ^ { 4 } d t } { \sqrt { 1 - t ^ { 2 } } }$

$\int_{}^{} {\frac{{ - 1}}{{\sqrt {1 - {x^2}} }}dx}$