Mathematics

$$\int _{ -\frac { \pi  }{ 2 }  }^{ \frac { \pi  }{ 2 }  }{ \frac { { sin }^{ 2 }x }{ { 1+(2017) }^{ x } } dx } $$ is


ANSWER

$$\frac { \pi }{ 4 } $$


View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86
Enroll Now For FREE

Realted Questions

Q1 Subjective Hard
$$\int\limits_0^{\frac{\pi }{2}} {\frac{{x\sin \,2x\,dx}}{{\cos 4x + \sin 4x}}} $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Subjective Medium
Evaluate $$\displaystyle \int \dfrac{x}{x^2+3} dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Medium
$$\displaystyle\int \frac{1}{\sqrt{\left ( x^{2}+3x+1 \right )}}dx.$$
  • A. $$\displaystyle \log \left [ \left ( x-3/2 \right ) \right ]+\sqrt{\left \{ \left ( x-3/2 \right )^{2}-\left ( \sqrt{3/2} \right )^{2} \right \}}.$$
  • B. $$\displaystyle \log \left [ \left ( x+3/2 \right ) \right ]-\sqrt{\left \{ \left ( x+3/2 \right )^{2}-\left ( \sqrt{5/2} \right )^{2} \right \}}.$$
  • C. $$\displaystyle \log \left [ \left ( x-3/2 \right ) \right ]-\sqrt{\left \{ \left ( x-3/2 \right )^{2}-\left ( \sqrt{3/2} \right )^{2} \right \}}.$$
  • D. $$\displaystyle \log \left [ \left ( x+3/2 \right ) \right ]+\sqrt{\left \{ \left ( x+3/2 \right )^{2}-\left ( \sqrt{5/2} \right )^{2} \right \}}.$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Hard
Primitive of $$\displaystyle \dfrac{3x^4-1}{(x^4+x+1)^2}$$ w.r.t  $$x$$ is
  • A. $$\displaystyle \dfrac{x}{(x^4+x+1)}+c$$
  • B. $$\displaystyle \dfrac{x+1}{(x^4+x+1)}+c$$
  • C. $$-\displaystyle \dfrac{x+1}{(x^4+x+1)}+c$$
  • D. $$-\displaystyle \dfrac{x}{(x^4+x+1)}+c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Subjective Easy
$$\int(2x^2-3 \, sin x+5 \sqrt{x})dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer