Mathematics

# $\int {{e^x}\left( {{{\sec }^2}x + \tan x} \right)} dx$

##### SOLUTION
$\int e^{x}(sec^{2} x+tan x)dx=\int d(e^{x}tanx )$
$= e^{x}tan x +c$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 109

#### Realted Questions

Q1 One Word Medium
The value of $\displaystyle \int_{0}^{1/2}\frac{dx}{\sqrt{\left ( x-x^{2} \right )}}$is $\displaystyle \frac{\pi }{k}.$ Find the value of $k$.

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Hard
The value of $\displaystyle \int_{0}^{\pi /2} \dfrac {\sin 2t}{\sin^{4}t + \cos^{4}t} dt$
• A. $\pi$
• B. $\dfrac {\pi}{3}$
• C. $\dfrac {\pi}{4}$
• D. $\dfrac {\pi}{2}$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
$\displaystyle \int\frac{\sqrt{1-x^{2}}+\sqrt{1+x^{2}}}{\sqrt{1-x^{4}}}dx=$
• A. $\cosh^{-1}x +\sin^{-1}x +c$
• B. $\cosh^{-1}x +\cos^{-1}x +c$
• C. $\sinh^{-1}x +\cos^{-1}x +c$
• D. $\sinh^{-1}x +\sin^{-1}x +c$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
The value of the definite integral $\underset{0}{\overset{\pi / 2}{\int}} \dfrac{sin 5x}{sin x} dx$ is :
• A. $\dfrac{\pi}{2}$
• B. $\pi$
• C. $2 \pi$
• D. $0$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q5 Passage Medium
For the next two (02) items that follow :
Consider the integrals $I_1=\int_{\frac{\pi}{6}}^{\frac{\pi}{3}}\frac{dx}{1+\sqrt{tan x}}$ and $I_2=\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sqrt{sin x}dx}{\sqrt{sin }x+\sqrt{cos}x}$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020