Mathematics

# $\int_{}^{} {\dfrac{{{{(x - {x^5})}^{\cfrac{1}{5}}}}}{{{x^6}}}} dx$ is equal to

$- \dfrac{5}{{24}}{\left( {\dfrac{1}{{{x^4}}} - 1} \right)^{\cfrac{6}{5}}} + C$

##### SOLUTION
$\displaystyle\int \dfrac{(x-x^5)^{1/5}}{x^6}dx$
$=\displaystyle\int \dfrac{x\left(\dfrac{1}{x^4}-1\right)^{1/5}}{x^6}dx$
$=\displaystyle\int \dfrac{\left(\dfrac{1}{x^4}-1\right)^{1/5}}{x^5}dx$
$\dfrac{1}{x^4}-1=t$
$=\dfrac{-4}{x^5}dx=dt$
$\dfrac{dx}{x^5}=-\dfrac{dt}{4}$
$=\displaystyle\int \dfrac{-t^{1/5}dt}{4}$
$=\dfrac{-5}{24}t^{6/5}+c$
$=\dfrac{-5}{24}\left(\dfrac{1}{x^4}-1\right)^{6/5}+c$
C is correct.

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Subjective Hard
Evaluate the following integral:
$\displaystyle \int { { x }^{ 2 }{ e }^{ { x }^{ 3 } }\cos { { \left( { e }^{ x } \right) }^{ 3 } } } dx$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
$\int \dfrac {1}{x^{2} (x^{4} + 1)^{3/4}}dx$ is equal to
• A. $\left (1 + \dfrac {1}{x^{4}}\right )^{1/4} + C$
• B. $(x^{4} + 1)^{1/4} + C$
• C. $\left (1 - \dfrac {1}{x^{4}}\right )^{1/4} + C$
• D. $-\left (1 + \dfrac {1}{x^{4}}\right )^{1/4} + C$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Solve:
$\int_{}^{} {\frac{{\cos x}}{{\sqrt {{{\sin }^2}x - 2\sin x - 3} }}} dx$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Hard
The integral $\displaystyle \int_2^4\frac {log x^2}{log x^2+log (36-12x+x^2)}dx$ is equal to
• A. $3$
• B. $2$
• C. $0$
• D. $1$

Find $\int a^{x} \cdot e^{x} dx$.