Mathematics

$\int \dfrac{sin x+ sin 2x + sin 3x}{cos x+cos 2x+cos3x}dx$

$\dfrac{log(sec2x)}{2}+c$

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

Realted Questions

Q1 Subjective Medium
Integrate the rational function   $\cfrac {x}{(x+1)(x+2)}$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
$\displaystyle \int \left(\frac{x}{1+x^5}\right)^\frac{3}{2}dx$ equals-
• A. $\dfrac{2}{5}\sqrt{1+x^5}+c$
• B. $\dfrac{2}{5}\sqrt{x^5}+c$
• C. None of these
• D. $\dfrac{2}{5}\sqrt{\dfrac{x^5}{1+x^5}}+c$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Evaluate the given integral.
$\displaystyle \int { \cfrac { x+2 }{ \sqrt { { x }^{ 2 }-1 } } } dx$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
Let $f(x) = \dfrac{1}{2} a_0 + \sum^n_{i = 1} a_i \, \cos (ix) + \sum_{j = 1}^n \, b_j \, \sin (jx)$. Then $\underset{-\pi}{\overset{\pi}{\int}} f(x) \, \cos \, kx \, dx$ is equal to
• A. $a_k$
• B. $b_k$
• C. $\pi b_k$
• D. $\pi a_k$

Let $\displaystyle f\left ( x \right )=\frac{\sin 2x \cdot \sin \left ( \dfrac{\pi }{2}\cos x \right )}{2x-\pi }$