Mathematics

# $\int {\dfrac{{(3\sin x - 2)\cos x}}{{5 - {{\cos }^2}x - 4\sin x}}dx}$

##### SOLUTION
$I=\int \dfrac{(3\sin x-2)\cos x}{5-cos^2x-4\sin x}dx$

$\Rightarrow$  $\dfrac{(3\sin x-2)}{\sin^2x-4\sin x+4}dx$

$\Rightarrow$  $\dfrac{(3\sin x-2)\cos x}{(\sin x-2)^2}dx$

Let $\sin x=t$
So, $\cos x\, dx=dt$
$\therefore$  $I=\int\dfrac{(3t-2)}{(t-2)^2}dt$

$\Rightarrow$  $2\int\dfrac{tdt}{(t-2)^2}-2\int\dfrac{dt}{(t-2)^2}$

$\Rightarrow$  $3\left[t\left(\dfrac{1}{-3(t-2)^3}\right)-\int\dfrac{dt}{-3(t-2)^3}\right]-2\left(\dfrac{1}{-3(t-2)^3}\right)+c$

$\Rightarrow$  $\dfrac{-t}{(t-2)^3}+\dfrac{1}{3}\left[\dfrac{1}{-4(t-2)^4}\right]+\dfrac{2}{3(t-2)^3}+c$

$\Rightarrow$  $\dfrac{1}{(t-2)^3}\left(-t+\dfrac{2}{3}\right)-\dfrac{1}{12(t-2)^4}+c$

$\Rightarrow$  $-\dfrac{1}{(t-2)^2}-\dfrac{4}{3(t-2)^3}-\dfrac{1}{12(t-2)^4}+c$

$\Rightarrow$  $-\dfrac{1}{(\sin x-2)^2}-\dfrac{4}{3(\sin x-2)^3}-\dfrac{1}{12\sin x-2)^4}+c$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Subjective Medium
Solve: $\displaystyle \overset{\frac{1}{2}}{\underset{\frac{1}{2}}{\int}} [x]dx$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Evaluate:
$\displaystyle\int { \left( \dfrac { x\cos { x } +\sin { x } }{ x\sin { x } } \right) dx }$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Find $\displaystyle \int \begin{pmatrix} \dfrac{\log x}{(x+1)^2}dx \end{pmatrix}.$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
Evaluate the following integral
$\int { \cfrac { { e }^{ x-1 }+{ x }^{ e-1 } }{ { e }^{ x }+{ x }^{ e } } } dx\quad$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q5 Subjective Medium
Let $f(x)=x+\phi(x)$ where $\phi(x)$ is an even function then find the value of $\displaystyle\int_{-1}^{1}xf(x)\ dx$.

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020