Mathematics

# $\int \dfrac{1}{x\sqrt{1+\ln x}} dx=m\sqrt{(1+\ln x)}+c$.Find $m$

2

##### SOLUTION

$\\1+lnx=t^2\\(\frac{1}{x})dx=2tdt\\\therefore I=\int (\frac{2tdt}{\sqrt{t^2}})\\=2\int dt=2t+C\\=2\sqrt{1+lnx}+C\\\therefore\>m=2$

Its FREE, you're just one step away

One Word Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Subjective Medium
Solve:$\int(1-\cos x)cosec^2 x dx=$ ?

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
The value of $\displaystyle \int_0^1 \dfrac{dx}{e^x + e}$ is equal to
• A. $\log \left( \dfrac{1 + e}{2} \right )$
• B. $\dfrac{1}{e} \log (1 + e)$
• C. $\log \left( \dfrac{2}{1 + e} \right )$
• D. $\dfrac{1}{e} \log \left( \dfrac{2}{1 + e} \right )$
• E. $\dfrac{1}{e} \log \left( \dfrac{1 + e}{2} \right )$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Integrate : $\sqrt{\dfrac{2 - x}{x}} \, (0 < x < 2)$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Hard
$\displaystyle \int \frac{3x+1}{2x^{2}+x+1}dx$=.....................................
• A. $\displaystyle \frac{4}{3}\log \left ( 2x^{2}+x+1 \right )+\frac{1}{2\sqrt{\left ( 7 \right )}}\tan ^{-1}\frac{3x+1}{\sqrt{\left ( 7 \right )}}.+C$
• B. $\displaystyle \frac{4}{3}\log \left ( 2x^{2}+x+1 \right )+\frac{1}{2\sqrt{\left ( 7 \right )}}\cot ^{-1}\frac{3x+1}{\sqrt{\left ( 7 \right )}}+C$
• C. none of these
• D. $\displaystyle \frac{3}{4}\log \left ( 2x^{2}+x+1 \right )+\frac{1}{2\sqrt{\left ( 7 \right )}}\tan ^{-1}\frac{4x+1}{\sqrt{\left ( 7 \right )}} +C.$

The value of integral $\int _{ -1 }^{ 3 }{ \left( \tan ^{ -1 }{ \left( \dfrac { x }{ 1+{ x }^{ 2 } } \right) } +\tan ^{ -1 }{ \left( \dfrac { { x }^{ 2 }+1 }{ x } \right) } \right) dx }$