Mathematics

# $\int \dfrac{1-cos\, x}{cos\,x(1+cos\,x)}dx=$

$log| sec\,x+tan\,x|+2\,tan(\dfrac{x}{2})+c$

##### SOLUTION

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Subjective Hard
Evaluate the following integral
$\int { \sin ^{ -1 }{ \sqrt { \cfrac { x }{ a+x } } } } dx$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Evaluate the following integral:
$\displaystyle \int_{0}^{3}(2x^2+3x +5)dx$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Hard
If $\displaystyle I_1=\int_{0}^{\frac{\pi}{2}}e^{-x} sin 4x dx$  and $\displaystyle I_2=\int_0^{2\pi}e^{-x} sin 4x dx$ and  $\displaystyle I_2=\lambda I_1$, then $\displaystyle \lambda$ is equal to
• A. $\displaystyle \frac{e^{2\pi}-1}{e^{\pi}-1}$
• B. $\displaystyle \frac{e^{\pi}-1}{1-e^{2\pi}}$
• C. $\displaystyle \frac{1-e^{2\pi}}{1-e^{\frac{\pi}{2}}}$
• D. $\displaystyle \frac{1-e^{-2\pi}}{1-e^{-\frac{\pi}{2}}}$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
Evaluate the following integral:

$\displaystyle\int_{0}^{\pi/2}\dfrac{\sin^{3/2} x}{\sin^{3/2}x+\cos^{3/2} x}\ dx$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q5 Passage Medium
Consider two differentiable functions $f(x), g(x)$ satisfying $\displaystyle 6\int f(x)g(x)dx=x^{6}+3x^{4}+3x^{2}+c$ & $\displaystyle 2 \int \frac {g(x)dx}{f(x)}=x^{2}+c$. where $\displaystyle f(x)>0 \forall x \in R$

On the basis of above information, answer the following questions :

Asked in: Mathematics - Limits and Derivatives

1 Verified Answer | Published on 17th 08, 2020