Mathematics

# $\int \dfrac { \sin x }{ 1+\cos^2 { x } }dx$

##### SOLUTION
$\displaystyle \int \frac{sin x}{1+ cos^{2}x}dx$
Put $cos\, x= 6$
$- sinx\, dx = dt$
$\displaystyle -\int \frac{1}{1+t^{2}}dt= -Tan^{-1}t\Rightarrow -Tan^{-1}(cos \, x)$

Its FREE, you're just one step away

Subjective Hard Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 109

#### Realted Questions

Q1 Subjective Medium
Calculate the following integral:
$\displaystyle\, \int_{\cfrac{\pi}{8}}^{\cfrac{\pi}{4}}\, \cot^2\, 2x\, dx$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Hard
The value of $\int {{{(x - 2)} \over {{{\left\{ {{{(x - 2)}^2}{{(x + 3)}^7}} \right\}}^{{1 \over 3}}}}}} dx$ is

• A. ${3 \over {20}}{\left( {{{x - 2} \over {x + 3}}} \right)^{{3 \over 4}}} + c$
• B. ${5 \over {12}}{\left( {{{x - 2} \over {x + 3}}} \right)^{{4 \over 3}}} + c$
• C. ${3 \over {20}}{\left( {{{x - 2} \over {x + 3}}} \right)^{{5 \over 3}}} + c$
• D. ${3 \over {20}}{\left( {{{x - 2} \over {x + 3}}} \right)^{{4 \over 3}}} + c$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Solve: $\int {{x^2}} {\sin^2}xdx$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Hard
Evaluate: $\int \dfrac {x + 2}{\sqrt {x^{2} + 5x + 6}} dx.$

$\displaystyle \int \dfrac{\sqrt{1 + x^2}}{x^4}dx$