Mathematics

$\int {\cot xdx}$

SOLUTION
$\int { cotx } dx=log\left| sinx \right| +C$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 109

Realted Questions

Q1 Subjective Hard
Evaluate the following integrals:
$\int { \cfrac { { x }^{ 2 }({ x }^{ 4 }+4) }{ { x }^{ 2 }+4 } } dx$

1 Verified Answer | Published on 17th 09, 2020

Q2 TRUE/FALSE Medium
State whether the given statement is true or false
the value of the integral $\displaystyle \int_{0}^{2a}\frac{f\left ( x \right )}{f\left ( x \right )+f\left ( 2a-x \right )}dx$ is equal to a.
• A. False
• B. True

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
The value of the definite integral $\displaystyle \int_{0}^{3\pi/4}{((1 + x) \sin x + (1-x) \cos x) dx,}$ is
• A. $\displaystyle 2 \tan \frac{3\pi}{8}$
• B. $\displaystyle 2 \tan \frac{\pi}{4}$
• C. $\displaystyle 2 \tan \frac{\pi}{8}$
• D. $0$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
The value of $\displaystyle \int_{0}^{\pi /4}\displaystyle \frac{\sin^{ \frac{1}{2}}x}{\cos^{ \frac{5}{2}}x} dx$ is
• A. $0$
• B. $\displaystyle \frac{\pi}{4}$
• C. $1$
• D. $\dfrac{2}{3}$

$\int_{}^{} {\frac{{ - 1}}{{\sqrt {1 - {x^2}} }}dx}$