Mathematics

# $\int { \cos ^{ -1 }{ \left( 4{ x }^{ 3 }-3x \right) dx } }$

##### SOLUTION

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Single Correct Hard
If I $=\int _{ 0 }^{ 1 }{ \dfrac { dx }{ \sqrt { 1+{ x }^{ 4 } } } }$, then
• A. $I\ge \dfrac { \pi }{ 4 }$
• B. $I\ge \dfrac { \pi }{ 5 }$
• C. $I\ge \dfrac { \pi }{ 2 }$
• D. $I\ge \dfrac { \pi }{ 6 }$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Hard
Find :
$\int { \dfrac { { se }c^{ 2 }x }{ { tan }^{ 2 }x+4 } } dx$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
$\displaystyle \int e^{x}[\log \cos x+\sec^{2}x] dx=$
• A. $e^{x}[\log\cos x+\sec^{2}x]+c$
• B. $e^{x}(\cos x)+c$
• C. $e^{x}[\log (\tan x)]+c$
• D. $e^{x}[ \log \cos x+ \tan x]+c$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Hard
$\displaystyle \int _{ 0 }^{ 60 }{ } \left[ \dfrac { 3 }{ { x }^{ 2 }+1 } \right]dx$, where [.] denotes the greatest integer function is equal to
• A. $\sqrt { 2 } +1$
• B. $\dfrac {3}{\sqrt { 2 } }$
• C. infinite
• D. $3\tan^{-1}\sqrt { 2 }$

Evaluate $\int \dfrac{e^x-e^{-x}}{e^x+e^{-x}}dx$