Mathematics

$$\int { \cos ^{ -1 }{ \left( 4{ x }^{ 3 }-3x \right) dx }  } $$


SOLUTION
View Full Answer

Its FREE, you're just one step away


Subjective Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84
Enroll Now For FREE

Realted Questions

Q1 Single Correct Hard
If I $$=\int _{ 0 }^{ 1 }{ \dfrac { dx }{ \sqrt { 1+{ x }^{ 4 } }  }  }$$, then 
  • A. $$I\ge \dfrac { \pi }{ 4 }$$
  • B. $$I\ge \dfrac { \pi }{ 5 }$$
  • C. $$I\ge \dfrac { \pi }{ 2 }$$
  • D. $$I\ge \dfrac { \pi }{ 6 }$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Subjective Hard
Find :
$$\int { \dfrac { { se }c^{ 2 }x }{ { tan }^{ 2 }x+4 }  } dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Medium
$$\displaystyle \int e^{x}[\log \cos x+\sec^{2}x] dx=$$
  • A. $$e^{x}[\log\cos x+\sec^{2}x]+c$$
  • B. $$e^{x}(\cos x)+c$$
  • C. $$e^{x}[\log (\tan x)]+c$$
  • D. $$e^{x}[ \log \cos x+ \tan x]+c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Hard
$$\displaystyle \int _{ 0 }^{ 60 }{  } \left[ \dfrac { 3 }{ { x }^{ 2 }+1 }  \right]dx$$, where [.] denotes the greatest integer function is equal to 
  • A. $$ \sqrt { 2 } +1$$
  • B. $$ \dfrac {3}{\sqrt { 2 } }$$
  • C. infinite
  • D. $$3\tan^{-1}\sqrt { 2 }$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Subjective Easy
Evaluate $$\int \dfrac{e^x-e^{-x}}{e^x+e^{-x}}dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer