Mathematics

# $\int (ax+b)^{2}$dx

##### SOLUTION
We know that $\dfrac{d}{dx}(ax+b)^{3}=3a(ax+b)^{2}$

$\Rightarrow (ax+b)^{2}=\dfrac{1}{3a}\dfrac{d}{dx}(ax+b)^{3}$

$\Rightarrow (ax+b)^{2} =\dfrac{d}{dx}[\dfrac{1}{3a}(ax+b)^{3}]$

Thus anti - derivative of $(ax+b)^{2} is \dfrac{1}{3a}(ax+b)^{3}.$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Subjective Medium
Solve:
$\displaystyle\int {\dfrac{{{{\sec }^2}x}}{{\cos e{c^2}x}}} dx$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Find : $\displaystyle \int \dfrac{sin^2x - cos^2 x}{sin\, x\,cos\, x} dx$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Easy
Evaluate $\int \dfrac{e^x-e^{-x}}{e^x+e^{-x}}dx$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Hard
The value of $\int_{0}^{1}{\dfrac{(x^{6}-x^{3})}{(2x^{3}+1)^{3}}dx}$ is equal to :
• A. $-\dfrac{1}{6}$
• B. $-\dfrac{1}{12}$
• C. $-\dfrac{1}{18}$
• D. $-\dfrac{1}{36}$

1 Verified Answer | Published on 17th 09, 2020

Q5 Single Correct Medium
If $f(x)$ is an integrable function in $\displaystyle \left ( \frac{\pi }{6}, \frac{\pi }{3} \right )$ and $\displaystyle I_{1}= \int_{\pi /6}^{\pi /3}\sec ^{2}x f\left ( 2\sin 2x \right )dx$ and $\displaystyle I_{2}= \int_{\pi /6}^{\pi /3}co\sec ^{2}x f\left ( 2\sin 2x \right )dx,$ then:
• A. $\displaystyle I_{1}= 2I_{2}$
• B. $\displaystyle 2I_{1}= I_{2}$
• C. none
• D. $\displaystyle I_{1}= I_{2}$