Mathematics

$$\int (7y^5 + 6y^2-1)=\dfrac{7y^6}{6}+by^3-y$$.Find $$b$$


ANSWER

2


SOLUTION

$$\int\>(7y^5+6y^2-1)\>dy$$

$$\\=7(\frac{y^6}{6})+6(\frac{y^3}{3})-y+c$$

$$\\=\frac{7y^6}{6}+2y^3-y+c$$

$$\\by\>comparison,\>b\>=2$$

View Full Answer

Its FREE, you're just one step away


One Word Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86
Enroll Now For FREE

Realted Questions

Q1 Subjective Hard
Evaluate:
$$\int { \cfrac { { x }^{ 2 } }{ \left( 1+{ x }^{ 3 } \right)  }  } dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Hard
If $$\displaystyle\int { \cfrac { 1 }{ 5+4\sin { x }  }  } dx=A\tan ^{ -1 }{ \left( B\tan { \cfrac { x }{ 2 }  } +\cfrac { 4 }{ 3 }  \right)  } +C\quad $$, then
  • A. $$A=\cfrac { 1 }{ 3 } ,B=\cfrac { 2 }{ 3 } $$
  • B. $$A=-\cfrac { 2 }{ 3 } ,B=\cfrac { 5 }{ 3 } $$
  • C. $$A=\cfrac { 1 }{ 3 } ,B=-\cfrac { 5 }{ 3 } $$
  • D. $$A=\cfrac { 2 }{ 3 } ,B=\cfrac { 5 }{ 3 } $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Medium
If $$\int { { x }^{ 5 }{ e }^{ -{ x }^{ 2 } } } =g(x){ e }^{ -{ x }^{ 2 } }+c $$, where $$c$$ is a constant of integration, then $$g(-1)$$ is equal to:
  • A. $$1$$
  • B. $$-\cfrac { 1 }{ 2 } $$
  • C. $$-1$$
  • D. $$-\cfrac { 5 }{ 2 } $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Multiple Correct Hard
If $$\displaystyle I=\int \sec^{2}x\:cosec ^{4}\:x\:dx= K\cot^{3}x+L\tan x+M\cot x+C$$ then

  • A. L$$=2$$
  • B. none of these
  • C. K$$=-1/3$$
  • D. M$$=-2$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Passage Medium
Consider two differentiable functions $$f(x), g(x)$$ satisfying $$\displaystyle 6\int f(x)g(x)dx=x^{6}+3x^{4}+3x^{2}+c$$ & $$\displaystyle 2 \int \frac {g(x)dx}{f(x)}=x^{2}+c$$. where $$\displaystyle f(x)>0    \forall  x \in  R$$

On the basis of above information, answer the following questions :

Asked in: Mathematics - Limits and Derivatives


1 Verified Answer | Published on 17th 08, 2020

View Answer