Mathematics

# $\int (7y^5 + 6y^2-1)=\dfrac{7y^6}{6}+by^3-y$.Find $b$

2

##### SOLUTION

$\int\>(7y^5+6y^2-1)\>dy$

$\\=7(\frac{y^6}{6})+6(\frac{y^3}{3})-y+c$

$\\=\frac{7y^6}{6}+2y^3-y+c$

$\\by\>comparison,\>b\>=2$

Its FREE, you're just one step away

One Word Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Subjective Hard
Evaluate:
$\int { \cfrac { { x }^{ 2 } }{ \left( 1+{ x }^{ 3 } \right) } } dx$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Hard
If $\displaystyle\int { \cfrac { 1 }{ 5+4\sin { x } } } dx=A\tan ^{ -1 }{ \left( B\tan { \cfrac { x }{ 2 } } +\cfrac { 4 }{ 3 } \right) } +C\quad$, then
• A. $A=\cfrac { 1 }{ 3 } ,B=\cfrac { 2 }{ 3 }$
• B. $A=-\cfrac { 2 }{ 3 } ,B=\cfrac { 5 }{ 3 }$
• C. $A=\cfrac { 1 }{ 3 } ,B=-\cfrac { 5 }{ 3 }$
• D. $A=\cfrac { 2 }{ 3 } ,B=\cfrac { 5 }{ 3 }$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
If $\int { { x }^{ 5 }{ e }^{ -{ x }^{ 2 } } } =g(x){ e }^{ -{ x }^{ 2 } }+c$, where $c$ is a constant of integration, then $g(-1)$ is equal to:
• A. $1$
• B. $-\cfrac { 1 }{ 2 }$
• C. $-1$
• D. $-\cfrac { 5 }{ 2 }$

1 Verified Answer | Published on 17th 09, 2020

Q4 Multiple Correct Hard
If $\displaystyle I=\int \sec^{2}x\:cosec ^{4}\:x\:dx= K\cot^{3}x+L\tan x+M\cot x+C$ then

• A. L$=2$
• B. none of these
• C. K$=-1/3$
• D. M$=-2$

Consider two differentiable functions $f(x), g(x)$ satisfying $\displaystyle 6\int f(x)g(x)dx=x^{6}+3x^{4}+3x^{2}+c$ & $\displaystyle 2 \int \frac {g(x)dx}{f(x)}=x^{2}+c$. where $\displaystyle f(x)>0 \forall x \in R$