Mathematics

$\int _{ -1 }^{ 1/2 }{ \dfrac { { e }^{ x }\left( 2-{ x }^{ 2 } \right) dx }{ \left( 1-x \right) \sqrt { 1-{ x }^{ 2 } } } }$ is equal to

ANSWER

$\dfrac { \sqrt { e } }{ 2 } \left( \sqrt { 3 } +1 \right)$

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

Realted Questions

Q1 Subjective Medium
Evaluate $\displaystyle \int {\frac{1}{{{x^4} + 1}}dx}$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Hard
The value of the definite integral $\int_\limits{ 1}^e( (x+1)e^x\ln x) dx$ is-
• A. $e$
• B. $e^e(e-1)$
• C. $e^{x+1}$
• D. $e^{e+1}+e$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
Evaluate: $\displaystyle I=\int_{0}^{{\pi}/{2}}\dfrac{e^{\sin x}-e^{\cos x}}{e^{\sin x}+e^{\cos x}}dx$
• A. $1$
• B. $\dfrac{p}{4}$
• C. $\displaystyle \frac{4}{\mathrm{e}^{\pi}}$
• D. $0$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Hard
Evaluate: $\displaystyle\int{\frac{5x^4+4x^5}{{(x^5+x+1)}^2}dx}$
• A. $x^5+x+1+C$
• B. $\displaystyle\frac{x^5}{x^5+x+1}+C$
• C. $x^{-4}+x^{-5}+C$
• D. $\displaystyle-\frac{x + 1}{x^5+x+1}+C$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q5 Subjective Easy
Evaluate:
$\int_{}^{} {\frac{{ - 1}}{{\sqrt {1 - {x^2}} }}dx}$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020