Mathematics

$$\int _{ -1 }^{ 1/2 }{ \dfrac { { e }^{ x }\left( 2-{ x }^{ 2 } \right) dx }{ \left( 1-x \right) \sqrt { 1-{ x }^{ 2 } }  }  }$$ is equal to 


ANSWER

$$\dfrac { \sqrt { e } }{ 2 } \left( \sqrt { 3 } +1 \right)$$


View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86
Enroll Now For FREE

Realted Questions

Q1 Subjective Medium
Evaluate $$\displaystyle \int {\frac{1}{{{x^4} + 1}}dx} $$ 

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Hard
The value of the definite integral $$\int_\limits{ 1}^e( (x+1)e^x\ln x) dx$$ is-
  • A. $$e$$
  • B. $$e^e(e-1)$$
  • C. $$e^{x+1}$$
  • D. $$e^{e+1}+e$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Medium
Evaluate: $$\displaystyle I=\int_{0}^{{\pi}/{2}}\dfrac{e^{\sin  x}-e^{\cos  x}}{e^{\sin  x}+e^{\cos  x}}dx$$
  • A. $$1$$
  • B. $$\dfrac{p}{4}$$
  • C. $$\displaystyle \frac{4}{\mathrm{e}^{\pi}}$$
  • D. $$0$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Hard
Evaluate: $$\displaystyle\int{\frac{5x^4+4x^5}{{(x^5+x+1)}^2}dx}$$
  • A. $$x^5+x+1+C$$
  • B. $$\displaystyle\frac{x^5}{x^5+x+1}+C$$
  • C. $$x^{-4}+x^{-5}+C$$
  • D. $$\displaystyle-\frac{x + 1}{x^5+x+1}+C$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Subjective Easy
Evaluate:
$$ \int_{}^{} {\frac{{ - 1}}{{\sqrt {1 - {x^2}} }}dx} $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer