Mathematics

$$\int_0^\pi  {{x^2}\,g\left( x \right)\,dx\, = } $$


ANSWER

$$\frac{\pi }{8}$$


View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86
Enroll Now For FREE

Realted Questions

Q1 Single Correct Hard
$$\displaystyle\int{\frac{(1+x^2)dx}{(1-x^2)\sqrt{1+x^2+x^4}}} = $$
  • A. $$\displaystyle I=-\frac{1}{2\sqrt{3}}\log{\left|\frac{\sqrt{x^2+\displaystyle\frac{1}{x^2}+1}-\sqrt{5}}{\sqrt{x^2+\displaystyle\frac{1}{x^2}+1}+\sqrt{5}}\right|}+C$$
  • B. $$\displaystyle I=-\frac{1}{4\sqrt{3}}\log{\left|\frac{\sqrt{x^2+\displaystyle\frac{1}{x^2}+1}-\sqrt{3}}{\sqrt{2x^2+\displaystyle\frac{1}{x^2}+1}+\sqrt{3}}\right|}+C$$
  • C. $$\displaystyle I=-\frac{1}{2\sqrt{3}}\log{\left|\frac{\sqrt{2x^2+\displaystyle\frac{1}{2x^2}+1}-\sqrt{3}}{\sqrt{2x^2+\displaystyle\frac{1}{2x^2}+1}+\sqrt{3}}\right|}+C$$
  • D. $$\displaystyle I=-\frac{1}{2\sqrt{3}}\log{\left|\frac{\sqrt{x^2+\displaystyle\frac{1}{x^2}+1}-\sqrt{3}}{\sqrt{x^2+\displaystyle\frac{1}{x^2}+1}+\sqrt{3}}\right|}+C$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Subjective Medium
$$\int {cosec\;x dx}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Subjective Medium
Evaluate $$\displaystyle \int_0^\pi  {\frac{{{x^2}\sin 2x.\sin \left( {\frac{\pi }{2}\cos x} \right){\rm{ dx}}}}{{\left( {2x - \pi } \right)}}} $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Subjective Hard
Evaluate $$\int e^{x} \sec x (1+\tan x)dx$$.

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 One Word Medium
$$\displaystyle \int_{0}^{\pi. }\frac{dx}{1+2\sin ^{2}x}= \frac{\pi }{\sqrt{\left ( k \right )}}$$
what is k?

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer