Mathematics

$$\int_0^\pi  {f\left( x \right)\,dx\, = } $$


ANSWER

$$\frac{8}{\pi }$$


View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86
Enroll Now For FREE

Realted Questions

Q1 Single Correct Medium
Evaluate the integral
$$\displaystyle \int_{\frac{\sqrt{2}}{3}}^{ \frac{\sqrt{3}}{3}}\displaystyle \frac{dx}{\sqrt{4-9x^{2}}}$$
  • A. $$\displaystyle \frac{\pi}{3}$$
  • B. $$\displaystyle \frac{\pi}{4}$$
  • C. $$\displaystyle \frac{7\pi}{30}$$
  • D. $$\displaystyle \frac{\pi}{36}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Hard
If $$\displaystyle \int { \frac { \left( x+1 \right)  }{ x{ \left( 1+x{ e }^{ x } \right)  }^{ 2 } } dx } =\log { \left| 1-f\left( x \right) \right|  } +f\left( x \right)+C$$, then $$f\left( x \right)=$$
  • A. $$\displaystyle \frac { 1 }{ x+{ e }^{ x } } $$
  • B. $$\displaystyle \frac { 1 }{ { \left( 1+x{ e }^{ x } \right)  }^{ 2 } } $$
  • C. $$\displaystyle \frac { 1 }{ { \left( x+{ e }^{ x } \right)  }^{ 2 } } $$
  • D. $$\displaystyle \frac { 1 }{ 1+x{ e }^{ x } } $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Subjective Medium
Find the integrals of the function   $$\displaystyle \dfrac {\cos x-\sin x}{1+\sin 2x}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Medium
If $$\displaystyle \int_{-2}^{3}f\left (x \right )dx= 5$$ and $$\displaystyle \int_{1}^{3}\left \{2-f(x) \right \}dx= 6$$ 

then the value of $$\displaystyle \int_{-2}^{1}f\left (x \right )dx$$  is?
  • A. $$3$$
  • B. $$-7$$
  • C. $$-3$$
  • D. $$-5$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Subjective Medium
Evaluate :$$\displaystyle \int \dfrac{dx}{x(x^2+1)}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer