Mathematics

# $\int_0^\pi {f\left( x \right)\,dx\, = }$

$\frac{8}{\pi }$

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Single Correct Medium
Evaluate the integral
$\displaystyle \int_{\frac{\sqrt{2}}{3}}^{ \frac{\sqrt{3}}{3}}\displaystyle \frac{dx}{\sqrt{4-9x^{2}}}$
• A. $\displaystyle \frac{\pi}{3}$
• B. $\displaystyle \frac{\pi}{4}$
• C. $\displaystyle \frac{7\pi}{30}$
• D. $\displaystyle \frac{\pi}{36}$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Hard
If $\displaystyle \int { \frac { \left( x+1 \right) }{ x{ \left( 1+x{ e }^{ x } \right) }^{ 2 } } dx } =\log { \left| 1-f\left( x \right) \right| } +f\left( x \right)+C$, then $f\left( x \right)=$
• A. $\displaystyle \frac { 1 }{ x+{ e }^{ x } }$
• B. $\displaystyle \frac { 1 }{ { \left( 1+x{ e }^{ x } \right) }^{ 2 } }$
• C. $\displaystyle \frac { 1 }{ { \left( x+{ e }^{ x } \right) }^{ 2 } }$
• D. $\displaystyle \frac { 1 }{ 1+x{ e }^{ x } }$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Find the integrals of the function   $\displaystyle \dfrac {\cos x-\sin x}{1+\sin 2x}$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
If $\displaystyle \int_{-2}^{3}f\left (x \right )dx= 5$ and $\displaystyle \int_{1}^{3}\left \{2-f(x) \right \}dx= 6$

then the value of $\displaystyle \int_{-2}^{1}f\left (x \right )dx$  is?
• A. $3$
• B. $-7$
• C. $-3$
• D. $-5$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q5 Subjective Medium
Evaluate :$\displaystyle \int \dfrac{dx}{x(x^2+1)}$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020