Mathematics

# $\int_{0}^{\pi}|1 + 2\cos x|dx$ is equal to

$\dfrac {\pi}{3} + 2\sqrt {3}$

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Subjective Medium
Solve:
$\int {\sin x\left( {2 + 5x} \right)} dx$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
$\displaystyle\int _{ 0 }^{ \infty }{ \dfrac { dx }{ \left( x+\sqrt { { x }^{ 2 }+1 } \right) ^{ n } } \left( n\epsilon N \right) \left( n\neq 1 \right) }$ is
• A. $n(n^{2}-1)$
• B. $\dfrac{n}{(n^{2}-1)}$
• C. $n^{2}$
• D. $0$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
$\displaystyle \int\frac{\sec^{2}x}{5+4\tan x}dx=$
• A. $\displaystyle \log|5+4\tan x|+c$
• B. $\displaystyle -\frac{1}{5+4\tan x}+c$
• C. $\displaystyle- \frac{1}{4}\log|5+4\tan x|+c$
• D. $\displaystyle {\frac{1}{4}}\log|5+4\tan x|+c$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
Solve$\displaystyle \int^{\pi/2} _0 \dfrac{x \ sin x \ cos x}{cos^4 x + sin^4 x} dx$

1 Verified Answer | Published on 17th 09, 2020

Q5 Single Correct Medium
If $y=\displaystyle\int \dfrac {dx}{(1+x^{2})^{\frac {1}{2}}}$ and $y=0$ when $x=0$, then value of $y$ when$x=1$, is:
• A. $\ln(2)$
• B. $\ln(\sqrt{2})$
• C. $\dfrac {1}{\sqrt {2}}$
• D. $\ln(1+\sqrt{2})$