Mathematics

# $\int_{0}^{\frac{\pi}{2}} \sin \theta \cdot \sin 2 \theta d \theta$

$\frac{2}{3}$

##### SOLUTION
$\displaystyle\int _{0}^{\pi/2} \sin \theta.\sin 2\theta d\theta=2\int ^{\pi/2}_{0}\sin ^2 \theta. \cos \theta d\theta=\bigg[\frac{2\sin ^3 \theta}{3}\bigg]^{\pi/2}_{0}=\dfrac{2}{3}$

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 109

#### Realted Questions

Q1 Single Correct Hard
The value of $\int _{ -2\pi }^{ 5\pi }{ \cot ^{ -1 }{ \left( \tan { x } \right) } } dx$ is equal to
• A. $\cfrac{7\pi}{2}$
• B. $\cfrac{3\pi}{2}$
• C. None of these
• D. $\cfrac{7{\pi}^{2}}{2}$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
The integral $\int _{ { \pi }/{ 12 } }^{ { \pi }/{ 4 } }{ \cfrac { 8\cos { 2x } }{ { \left( \tan { x } +\cot { x } \right) }^{ 3 } } dx }$  equals:
• A. $\cfrac { 15 }{ 64 }$
• B. $\cfrac { 13 }{ 32 }$
• C. $\cfrac { 13 }{ 256 }$
• D. $\cfrac { 15 }{ 128 }$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Hard
The value of $\displaystyle\int{\frac{dx}{(x-\beta)\sqrt{(x-\alpha)(\beta-x)}}}$, is equal to
• A. $\displaystyle\frac{-1}{\beta-\alpha}\sqrt{\frac{x-\alpha}{\beta-x}}+C$
• B. $\displaystyle\frac{1}{\beta-\alpha}\sqrt{\frac{x-\alpha}{\beta-x}}+C$
• C. none of these
• D. $\displaystyle\frac{2}{\alpha-\beta}\sqrt{\frac{x-\alpha}{\beta-x}}+C$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Hard
If $\displaystyle I = \int_{0}^{\pi/2} \frac{dx}{5+3\sin x} =\lambda \tan^{-1} \left(\frac{1}{2}\right )$ then
value of $\lambda$ is
• A. $1$
• B. $\displaystyle \frac{1}{3}$
• C. $\displaystyle \frac{1}{4}$
• D. $\displaystyle \frac{1}{2}$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q5 Subjective Hard
Evaluate: $\displaystyle {\int}_{0}^{1}\dfrac{1}{\sqrt{1+x+\sqrt{x}}}dx$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020