Mathematics

$${\int}_{0}^{a}\left[f\left(a+x\right)+f\left(a-x\right)\right]dx=$$


ANSWER

$${\int}_{-a}^{a}f(x)dx$$


View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84
Enroll Now For FREE

Realted Questions

Q1 Subjective Hard
Evaluate:  $$\displaystyle \int_{0}^{\pi/ 2} \frac{\sin^2x}{\sin x+\cos x}dx$$.

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Medium
What is $$\displaystyle \int_{0}^{2\pi}\sqrt {1 + \sin \dfrac {x}{2}}dx$$ equal to?
  • A. $$4$$
  • B. $$2$$
  • C. $$0$$
  • D. $$8$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Hard
$$\int \dfrac{(x+1)}{x(1+xe^{x})^{2}}dx$$ is equal to
  • A. $$ln \left|\dfrac{xe^{x}}{1+xe^{x}}\right|+\dfrac{1}{1+xe^{x}}+C$$
  • B. $$\dfrac{1}{1+xe^{x}}+C$$
  • C. $$x+ln \left|\dfrac{x}{1+xe^{x}}\right|+\dfrac{1}{1+ex^{x}}+C$$
  • D. $$ln \left| \frac{ xe^{ x } }{ 1+xe^{ x } } \right| +C$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Medium
The integral $$\displaystyle \int \frac{2x^{12} + 5x^9}{(x^5 + x^3 + 1)^3} dx$$ is equal to :
where, C is an arbitrary constant.
  • A. $$\frac{- x^5}{(x^5 + x^3 + 1)^2} + C$$
  • B. $$\frac{x^5}{(x^5 + x^3 + 1)^2} + C$$
  • C. $$\frac{- x^{10}}{2(x^5 + x^3 + 1)^2} + C$$
  • D. $$\frac{x^{10}}{2(x^5 + x^3 + 1)^2} + C$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Passage Medium
Consider two differentiable functions $$f(x), g(x)$$ satisfying $$\displaystyle 6\int f(x)g(x)dx=x^{6}+3x^{4}+3x^{2}+c$$ & $$\displaystyle 2 \int \frac {g(x)dx}{f(x)}=x^{2}+c$$. where $$\displaystyle f(x)>0    \forall  x \in  R$$

On the basis of above information, answer the following questions :

Asked in: Mathematics - Limits and Derivatives


1 Verified Answer | Published on 17th 08, 2020

View Answer