Mathematics

# $\int _{ 0 }^{ \pi }{ |cosx{ | }^{ 3 }dx }$ is equal to

$\cfrac { 4 }{ 3 }$

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Subjective Hard
Evaluate the given integral.
$\displaystyle \int { { e }^{ x } } \left( \cfrac { \sin { 4x } -4 }{ 1-\cos { 4x } } \right) dx\quad$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
$\displaystyle\int \dfrac{(3x^3+1)dx}{x(x\cdot e^{x^3}+1)}$ is equal to?
• A. $ln\left|\dfrac{xe^{x^3}}{xe^{x^3}+1}\right|+C$
• B. $ln\left|\dfrac{xe^{x^3}}{xe^{x^3}-1}\right|+C$
• C. $ln\left|\dfrac{xe^{x^3}+1}{xe^{x^3}}\right|+C$
• D. $ln \left|\dfrac{xe^{x^3}-1}{xe^{x^3}}\right|+C$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
Evaluate $\displaystyle \int e^{\sin x}\sin 2xdx$
• A. $2e^{\sin x}(\sin x+1)+c$
• B. $e^{\sin x}(\sin x+2)+c$
• C. $e^{\sin x}(3\sin x -2)+c$
• D. $e^{\sin x}(2\sin x-2)+c$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
Prove that $\displaystyle\int^{\pi/2}_0\dfrac{(\sin x-\cos x)}{(1+\sin x\cos x)}dx=0$.

1 Verified Answer | Published on 17th 09, 2020

Q5 Subjective Medium
$\int {\dfrac {\cos 2x}{\sin x}}dx$