Mathematics

$$\int _{0}^{-\pi/2} \ln (\sin^{2}{\theta}+k^{2}\cos^{2}{\theta})d\theta$$ is equal to


ANSWER

$$\pi \ \ln ({\dfrac{k+1}{2}})$$


SOLUTION
View Full Answer

Its FREE, you're just one step away


Single Correct Hard Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 111
Enroll Now For FREE

Realted Questions

Q1 Single Correct Medium
Evaluate: $$\displaystyle \int_{\sqrt{8}}^{\sqrt{15}}x\sqrt{1+x^{2}}.dx$$
  • A. $$\dfrac{15}{8}$$
  • B. $$\dfrac{37}{6}$$
  • C. $$\displaystyle \frac{37}{9}$$
  • D. $$\dfrac{37}{3}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Subjective Hard
Evaluate: $$\displaystyle \int _{ \pi /4 }^{ \pi /2 }{ \cos { 2x } \log { \sin { x }  }  } dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Medium
Evaluate : $$\displaystyle \int \frac{x^{3}+x+1}{x^{2}-1}dx$$
  • A. $$\displaystyle =\frac{x^{3}}{2}+log\left | x^{3}-1 \right |+\frac{1}{2}log\left |\frac{x-1}{x+1} \right |+C$$
  • B. $$\displaystyle =\frac{3x^{2}}{2}+log\left | 3x^{2}-1 \right |+\frac{1}{2}log\left |\frac{x-1}{x+1} \right |+C$$
  • C. $$\displaystyle =\frac{x^{2}}{5}+log\left | x^{2}+1 \right |+\frac{1}{3}log\left |\frac{x-1}{x+1} \right |+C$$
  • D. $$\displaystyle =\frac{x^{2}}{2}+log\left | x^{2}-1 \right |+\frac{1}{2}log\left |\frac{x-1}{x+1} \right |+C$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Medium
Evaluate: $$\displaystyle\int \frac{x}{\sqrt{\left ( 1-x^{2} \right )}\cos ^{2}\sqrt{\left ( 1-x^{2} \right )}}dx$$
  • A. $$\displaystyle \tan \sqrt{1-x^{2}}$$
  • B. $$\displaystyle -\tan ({1-x^{2}})$$
  • C. $$\displaystyle -\sec^{2} \sqrt{1-x^{2}}$$
  • D. $$\displaystyle -\tan \sqrt{1-x^{2}}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Passage Medium
Let $$n \space\epsilon \space N$$ & the A.M., G.M., H.M. & the root mean square of $$n$$ numbers $$2n+1, 2n+2, ...,$$ up to $$n^{th}$$ number are $$A_{n}$$, $$G_{n}$$, $$H_{n}$$ and $$R_{n}$$ respectively. 
On the basis of above information answer the following questions

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer