Mathematics

$$ \int _{ 0 }^{ \frac { \pi  }{ 2 }  }{ \frac { \sin ^{ \frac { 3 }{ 2 }  }{ x }  }{ \sin ^{ \frac { 3 }{ 2 }  }{ x } +\cos ^{ \frac { 3 }{ 2 }  }{ x }  }  } dx=\dfrac{\pi}{4}\\ $$


ANSWER

True


View Full Answer

Its FREE, you're just one step away


TRUE/FALSE Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84
Enroll Now For FREE

Realted Questions

Q1 Multiple Correct Hard
$$\int { { 5 }^{ mx }{ 7 }^{ nx } } dx,m,n\in N$$ is equal to
  • A. $$\cfrac { \left( m.n \right) { 5 }^{ mx }+{ 7 }^{ nx } }{ m\log { 5 } +n\log { 7 } } +K\quad $$
  • B. None of these
  • C. $$\cfrac { { 5 }^{ mx }+{ 7 }^{ nx } }{ m\log { 5 } +n\log { 7 } } +K$$
  • D. $$\cfrac { { e }^{ \left( m\log { 5 } +n\log { 7 } \right) x } }{ \log { { 5 }^{ m } } +\log { { 7 }^{ n } } } +K$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Hard
Let $$f$$ be a positive function. If $$\displaystyle I_{1}=\int_{1-k}^{k}xf{x(1-x)}dx,\ I_{2}=\int_{1-k}^{k}f{x(1-x)}dx,$$ where $$ 2k-1>0,$$ then $$\displaystyle \frac{I_{1}}{I_{2}}$$ is
  • A. $$2$$
  • B. $$k$$
  • C. $$1$$
  • D. $$\displaystyle \frac{1}{2}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Subjective Medium
Evaluate  :  
      $$\int {\frac{{x - 5}}{{\sqrt {{x^2} + 6x + 7} }}dx} .$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Hard
$$\displaystyle \int \dfrac {1}{x^{2}(x^{4} + 1)^{3/4}} dx$$ is equal to ____
  • A. $$\dfrac {-(1 + x^{4})^{1/4}}{x^{2}} + C$$
  • B. $$\dfrac {-(1 + x^{4})^{1/4}}{2x} + C$$
  • C. $$\dfrac {-(1 + x^{4})^{3/4}}{x} + C$$
  • D. $$\dfrac {-(1 + x^{4})^{1/4}}{x} + C$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Passage Medium
Consider two differentiable functions $$f(x), g(x)$$ satisfying $$\displaystyle 6\int f(x)g(x)dx=x^{6}+3x^{4}+3x^{2}+c$$ & $$\displaystyle 2 \int \frac {g(x)dx}{f(x)}=x^{2}+c$$. where $$\displaystyle f(x)>0    \forall  x \in  R$$

On the basis of above information, answer the following questions :

Asked in: Mathematics - Limits and Derivatives


1 Verified Answer | Published on 17th 08, 2020

View Answer