Mathematics

# $\int _{ 0 }^{ 2 }{ \dfrac { \sqrt { 2+x } }{ \sqrt { 2-x } } } dx=$

${\pi}+2$

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Subjective Medium
$\displaystyle \int { { e }^{ 3\log { x } }{ \left( { x }^{ 4 }+1 \right) }^{ -1 } } dx=$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
$\int 5^{{5}^{{5}^{x}}} . 5^{{5}^{x}} . 5^x dx$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Hard
$\displaystyle\int { \frac { dx }{ \sqrt { \left( x-a \right) \left( b-x \right) } } }$ equals
• A. $\displaystyle\sin ^{ -1 }{ \sqrt { \left( \frac { x+a }{ b-a } \right) } } +c$
• B. $\displaystyle\cos ^{ -1 }{ \sqrt { \left( \frac { x+a }{ b-a } \right) } } +c$
• C. None of these
• D. $\displaystyle2\sin ^{ -1 }{ \sqrt { \left( \frac { x+a }{ b-a } \right) } } +c$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Hard
Evaluate the following integral:
$\displaystyle \quad \int { \cfrac { \sin { 2x } }{ \sin { \left( x-\cfrac { \pi }{ 6 } \right) } \sin { \left( x+\cfrac { \pi }{ 6 } \right) } } } dx$

Evaluate $\displaystyle \int_0^\pi {\frac{{{x^2}\sin 2x.\sin \left( {\frac{\pi }{2}\cos x} \right){\rm{ dx}}}}{{\left( {2x - \pi } \right)}}}$