Mathematics

$$\int _{ 0 }^{ 2 }{ \dfrac { \sqrt { 2+x }  }{ \sqrt { 2-x }  }  } dx=$$


ANSWER

$${\pi}+2$$


View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84
Enroll Now For FREE

Realted Questions

Q1 Subjective Medium
$$\displaystyle \int { { e }^{ 3\log { x }  }{ \left( { x }^{ 4 }+1 \right)  }^{ -1 } } dx=$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Subjective Medium
$$ \int 5^{{5}^{{5}^{x}}} . 5^{{5}^{x}} . 5^x dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Hard
$$\displaystyle\int { \frac { dx }{ \sqrt { \left( x-a \right) \left( b-x \right)  }  }  } $$ equals
  • A. $$\displaystyle\sin ^{ -1 }{ \sqrt { \left( \frac { x+a }{ b-a }  \right)  }  } +c$$
  • B. $$\displaystyle\cos ^{ -1 }{ \sqrt { \left( \frac { x+a }{ b-a }  \right)  }  } +c$$
  • C. None of these
  • D. $$\displaystyle2\sin ^{ -1 }{ \sqrt { \left( \frac { x+a }{ b-a }  \right)  }  } +c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Subjective Hard
Evaluate the following integral:
$$\displaystyle \quad \int { \cfrac { \sin { 2x }  }{ \sin { \left( x-\cfrac { \pi  }{ 6 }  \right)  } \sin { \left( x+\cfrac { \pi  }{ 6 }  \right)  }  }  } dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Subjective Medium
Evaluate $$\displaystyle \int_0^\pi  {\frac{{{x^2}\sin 2x.\sin \left( {\frac{\pi }{2}\cos x} \right){\rm{ dx}}}}{{\left( {2x - \pi } \right)}}} $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer