Mathematics

$$\int _{ 0 }^{ 1 }{ \cfrac { logx }{ \sqrt { 1-{ x }^{ 2 } }  }  } dx=$$


ANSWER

$$\cfrac { \pi }{ 2 } log2$$


View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86
Enroll Now For FREE

Realted Questions

Q1 Subjective Medium
Integrate $$\displaystyle\int {\sqrt {\frac{{1 + x}}{{1 - x}}} dx\  , on  ( - 1,1)\,.} $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Subjective Medium

Evaluate the following definite integral:

$$\displaystyle \int _{0}^{\pi /2} \cos^2 x\ dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Medium
$$\displaystyle \frac{1}{x^{4}+1}=$$
  • A. $$[\displaystyle \frac{x+\sqrt{2}}{2\sqrt{2}\sqrt{2}}\frac{x+\sqrt{2}}{2\sqrt{2}(x^{2}-\sqrt{2}x+1)}]$$
  • B. $$[\displaystyle \frac{x+\sqrt{2}}{x^{2}+\sqrt{2}x+1}-\frac{x+\sqrt{2}}{(x^{2}-\sqrt{2}x+1)}]$$
  • C. $$[\displaystyle \frac{x+\sqrt{2}}{2\sqrt{2}(x^{2}+\sqrt{2}x+1)}\frac{\sqrt{2}-x}{(-\sqrt{2})}]$$
  • D. $$\displaystyle \frac{1}{2\sqrt{2}}[\frac{\mathrm{x}+\sqrt{2}}{(\mathrm{x}^{2}+\sqrt{2}\mathrm{x}+1)}+\frac{\sqrt{2}-\mathrm{x}}{(\mathrm{x}^{2}-\sqrt{2}\mathrm{x}+1)}]$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Medium

$$\displaystyle \overset{\infty}{\underset{0}{\int}} x^6 e^{\tfrac{-x}{2}}
dx =$$

  • A. $$2^6 \left \lfloor 6   \right. $$
  • B. $$\dfrac{ \left \lfloor 6   \right.}{2^7} $$
  • C. $$\dfrac{ \left \lfloor 6   \right.}{2^6} $$
  • D. $$2^7 \left \lfloor 6   \right. $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Subjective Hard
Evaluate :  $$\int e ^ { \sin ^ { - 1 } x } \left( \dfrac { \ell n x } { \sqrt { 1 - x ^ { 2 } } } + \dfrac { 1 } { x } \right) d x$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer