Mathematics

# If $\int { { x }^{ 13/2 } } .{ \left( 1+{ x }^{ 5/2 } \right) }^{ 1/2 }dx=p{ \left( 1+{ x }^{ 5/2 } \right) }^{ 7/2 }+Q{ \left( 1+{ x }^{ 5/2 } \right) }^{ 5/2 }+R{ \left( 1+{ x }^{ 5/2 } \right) }^{ 3/2 }+C$, then P, Q and R are

$P=\cfrac { 4 }{ 35 } ,Q=-\cfrac { 8 }{ 25 } ,R=\cfrac { 4 }{ 15 }$

##### SOLUTION
$I=\displaystyle\int{{x}^{\frac{13}{2}}{\left(1+{x}^{\frac{5}{2}}\right)}^{\frac{1}{2}}dx}$

Let $t=1+{x}^{\frac{5}{2}}\Rightarrow\,dt=\dfrac{5}{2}{x}^{\frac{5}{2}-1}dx=\dfrac{5}{2}{x}^{\frac{3}{2}}dx$

$\Rightarrow\,\dfrac{2}{5}\dfrac{dt}{{x}^{\frac{3}{2}}}=dx$

We have $t=1+{x}^{\frac{5}{2}}$

$\Rightarrow\,t-1={x}^{\frac{5}{2}}$

$\Rightarrow\,{x}^{5}={\left(t-1\right)}^{2}$

$I=\displaystyle\int{{x}^{\frac{13}{2}}{\left(1+{x}^{\frac{5}{2}}\right)}^{\frac{1}{2}}dx}$

$=\displaystyle\int{{x}^{\frac{13}{2}}{t}^{\frac{1}{2}}\dfrac{2}{5}\dfrac{dt}{{x}^{\frac{3}{2}}}}$

$=\dfrac{2}{5}\displaystyle\int{{x}^{\frac{13-3}{2}}{t}^{\frac{1}{2}}dt}$

$=\dfrac{2}{5}\displaystyle\int{{x}^{\frac{10}{2}}{t}^{\frac{1}{2}}dt}$

$=\dfrac{2}{5}\displaystyle\int{{x}^{5}{t}^{\frac{1}{2}}dt}$

$=\dfrac{2}{5}\displaystyle\int{{\left(t-1\right)}^{2}{t}^{\frac{1}{2}}dt}$ where ${\left(t-1\right)}^{2}={x}^{5}$

$=\dfrac{2}{5}\displaystyle\int{\left({t}^{2}-2t+1\right){t}^{\frac{1}{2}}dt}$

$=\dfrac{2}{5}\displaystyle\int{{t}^{2+\frac{1}{2}}dt}-\dfrac{4}{5}\displaystyle\int{{t}^{1+\frac{1}{2}}dt}+\dfrac{2}{5}\displaystyle\int{{t}^{\frac{1}{2}}dt}$

$=\dfrac{2}{5}\displaystyle\int{{t}^{\frac{5}{2}}dt}-\dfrac{4}{5}\displaystyle\int{{t}^{\frac{3}{2}}dt}+\dfrac{2}{5}\displaystyle\int{{t}^{\frac{1}{2}}dt}$

$=\dfrac{2}{5}\dfrac{{t}^{\frac{5}{2}+1}}{\dfrac{5}{2}+1}-\dfrac{4}{5}\dfrac{{t}^{\frac{3}{2}+1}}{\dfrac{3}{2}+1}+\dfrac{2}{5}\dfrac{{t}^{\frac{1}{2}+1}}{\dfrac{1}{2}+1}+c$

$=\dfrac{2}{5}\dfrac{{t}^{\frac{7}{2}}}{\dfrac{7}{2}}-\dfrac{4}{5}\dfrac{{t}^{\frac{5}{2}}}{\dfrac{5}{2}}+\dfrac{2}{5}\dfrac{{t}^{\frac{3}{2}}}{\dfrac{3}{2}}+c$

$=\dfrac{2}{5}\dfrac{2{t}^{\frac{7}{2}}}{7}-\dfrac{4}{5}\dfrac{2{t}^{\frac{5}{2}}}{5}+\dfrac{2}{5}\dfrac{2{t}^{\frac{3}{2}}}{3}+c$

$=\dfrac{4}{35}{t}^{\frac{7}{2}}-\dfrac{8}{25}{t}^{\frac{5}{2}}+\dfrac{4}{15}{t}^{\frac{3}{2}}+c$

where $t=1+{x}^{\frac{5}{2}}$

$=\dfrac{4}{35}{\left(1+{x}^{\frac{5}{2}}\right)}^{\frac{7}{2}}-\dfrac{8}{25}{\left(1+{x}^{\frac{5}{2}}\right)}^{\frac{5}{2}}+\dfrac{4}{15}{\left(1+{x}^{\frac{5}{2}}\right)}^{\frac{3}{2}}+c$

is of the form $P{\left(1+{x}^{\frac{5}{2}}\right)}^{\frac{7}{2}}+Q{\left(1+{x}^{\frac{5}{2}}\right)}^{\frac{5}{2}}+R{\left(1+{x}^{\frac{5}{2}}\right)}^{\frac{3}{2}}+c$

$\therefore\,P=\dfrac{4}{35},\,Q=-\dfrac{8}{25}$ and $R=\dfrac{4}{15}$

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Subjective Medium
Using properties of integrals, calculate $\int { 3{ e }^{ x } } +5\cos x-10\sec^{ 2 }xdx$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q2 Multiple Correct Hard
$\int_{0}^{2\pi}sin^{4}$ x dx is equal to
• A. $8\int_{0}^{\frac{\pi}{4}}sin^{4}$ x dx
• B. $3\int_{0}^{\frac{2\pi}{3}}sin^{4}$ x dx
• C. $2\int_{0}^{\pi}sin^{4}$ x dc
• D. $4\int_{0}^{\frac{\pi}{2}}cos^{4}$ x dx

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
$\displaystyle\int\frac{x^2-2}{x^3\sqrt{x^2-1}}dx$ is equal to.
• A. $\displaystyle\frac{x^2}{\sqrt{x^2-1}}+C$
• B. $\displaystyle -\frac{x^2}{\sqrt{x^2-1}}+C$
• C. $\displaystyle\frac{\sqrt{x^2-1}}{x^2}+C$
• D. $\displaystyle -\frac{\sqrt{x^2-1}}{x^2}+C$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
Solve:
$\int\limits_0^1 {{{\tan }^{ - 1}}\left( {\dfrac{{2x}}{{1 - {x^2}}}} \right)dx}$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q5 Subjective Medium
Solve :
$\displaystyle \int_1^2(4x^3-5x^2+6x+9)dx$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020