Mathematics

If $$f(x)=\int_{0}^{x}t (sinx - sint)dt$$  then:


ANSWER

$$f'''(x)+f'(x)= cosx - 2x sinx$$


View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86
Enroll Now For FREE

Realted Questions

Q1 Subjective Medium
Integrate the following:
$$\displaystyle \int\limits_{\pi /3}^{\pi /2} {{{(\tan x + \cot x)}^2}dx} $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 One Word Hard
If $$\displaystyle \int_{0}^{\pi}\frac{x^{2}\cos x}{(1+\sin x)^{2}}dx=A \pi-\pi^{2}$$ then A is

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Subjective Medium
$$\int { \dfrac { \sqrt { 4+{ x }^{ 2 } }  }{ { x }^{ 6 } } dx } =\dfrac { { \left( a+{ x }^{ 2 } \right)  }^{ 3/2 }\left( { x }^{ 2 }-b \right)  }{ 120{ x }^{ 5 } }+C$$ then $$a+b$$ equals to:

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Hard
$$\displaystyle \int \frac{\sec^{2}x dx}{\sqrt{\tan^{2} x+4}}=$$
  • A. $$\dfrac{1}{2}\ln\left ( \tan x+\sqrt{\tan^{2} x+4} \right )+C$$
  • B. $$\ln\left ( \dfrac{1}{2}\tan x+\dfrac{1}{2}\sqrt{\tan^{2} x+4} \right )+C$$
  • C. None of these
  • D. $$\ln\left ( \tan x+\sqrt{\tan^{2} x+4} \right )+C$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Single Correct Hard
$$\int { \cfrac { \cos { x }  }{ \left( 1+\sin ^{ 2 }{ x }  \right)  }  } dx=$$?
  • A. $$-\tan ^{ -1 }{ \left( \sin { x } \right) } +C$$
  • B. $$\tan ^{ -1 }{ \left( \cos { x } \right) } +C$$
  • C. $$-\tan ^{ -1 }{ \left( \cos { x } \right) } +C$$
  • D. $$\tan ^{ -1 }{ \left( \sin { x } \right) } +C$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer