Mathematics

If $\displaystyle f\left ( a+b-x \right )= f\left ( x \right )$ then $\displaystyle \int_{a}^{b}xf\left ( x \right )dx$ is equal to

$\displaystyle \frac{a+b}{2}\int_{a}^{b}f\left ( x \right )dx$

SOLUTION
As $f\left( a+b-x \right) =f\left( x \right)$
$\displaystyle \int _{ a }^{ b }{ xf\left( x \right) dx } =\quad \displaystyle \int _{ a }^{ b }{ \left( a+b-x \right) f\left( a+b-x \right) dx } \\ =\displaystyle \int _{ a }^{ b }{ \left( a+b-x \right) f\left( x \right) dx } =\displaystyle \int _{ a }^{ b }{ \left( a+b \right) f\left( x \right) dx } -\displaystyle \int _{ a }^{ b }{ xf\left( x \right) dx } \\ \Rightarrow 2\displaystyle \int _{ a }^{ b }{ xf\left( x \right) dx } =\left( a+b \right) \displaystyle \int _{ a }^{ b }{ f\left( x \right) dx } \\ \Rightarrow \displaystyle \int _{ a }^{ b }{ xf\left( x \right) dx } =\quad \cfrac { \left( a+b \right) }{ 2 } \displaystyle \int _{ a }^{ b }{ f\left( x \right) dx }$

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

Realted Questions

Q1 Single Correct Hard
Integrate the given equation $\int { \dfrac { \sqrt { { x }^{ 2 }+1 } (\log { \left( { x }^{ 2 }+1 \right) -2\log { x }) } }{ { x }^{ 4 } } } dx$
• A. $\dfrac{-1}{3}(1+\dfrac{1}{x^2})^\cfrac32\log(1+\dfrac{1}{x^2})+\dfrac{2}{9}(1+\dfrac{1}{x^2})^\cfrac32+c$
• B. $\dfrac{-1}{9}(1+\dfrac{1}{x^2})^\cfrac32\log(1+\dfrac{1}{x^2})+\dfrac{2}{9}(1+\dfrac{1}{x^2})^\cfrac32+c$
• C. None of these
• D. $\dfrac{{ - 1}}{3}{\left( {1 + \dfrac{1}{{{x^3}}}} \right)^{\frac{3}{2}}}\log \left( {1 + \dfrac{1}{{{x^3}}}} \right) + \dfrac{2}{9}{\left( {1 + \dfrac{1}{{{x^3}}}} \right)^{\frac{3}{2}}} + c$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Show that $\displaystyle \int \frac{\sin \alpha }{\sqrt{\left ( 1+\cos \alpha \right )}}d\alpha =-2\sqrt{2}\cos \frac{\alpha }{2}$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Hard
Evaluate : $\displaystyle \int_{- \pi}^{\pi} \dfrac{\sin^2 x}{1 + e^x}dx$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
Integrate $\displaystyle \int { \dfrac { { \sec }^{ 2 }x }{ \tan x } } dx$

1 Verified Answer | Published on 17th 09, 2020

Q5 Subjective Medium
Evaluate:
$\displaystyle\int\limits_{0}^{2a}\dfrac{f(x)}{f(x)+f(2a-x)}dx$.