Mathematics

If the value of the integral $$\int_{1}^{2}{e^{x^{2}}}dx$$ is $$\alpha$$, then the value of $$\int_{e}^{e^4}{\sqrt{\log{x}}}dx$$ is 


ANSWER

$$e^4-e-\alpha$$


View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84
Enroll Now For FREE

Realted Questions

Q1 Single Correct Hard
The value of $$\displaystyle\int _{ 0 }^{ \tfrac { \pi  }{ 2 }  }{ \frac { \cos ^{ \frac { 5 }{ 3 }  }{ x }  }{ \cos ^{ \frac { 5 }{ 3 }  }{ x } +\sin ^{ \frac { 5 }{ 3 }  }{ x }  } dx } $$ is
  • A. $$\dfrac { \pi }{ 2 } $$
  • B. $$0$$
  • C. $$\pi$$
  • D. $$\dfrac { \pi }{ 4 } $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 One Word Hard
$$\displaystyle \int \frac{dx}{\cos ^{3}x\sqrt{\left (\sin 2x  \right )}}= \frac{\sqrt{2}}{5}\left ( t^{2}+5 \right )\sqrt{t}$$. where $$t=\tan x$$.
If this is true enter 1, else enter 0.

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Medium
$$\int_{}^{} {\dfrac{{{{(x - {x^5})}^{\cfrac{1}{5}}}}}{{{x^6}}}} dx$$ is equal to
  • A. $$\dfrac{5}{{24}}{\left( {\dfrac{1}{{{x^4}}} - 1} \right)^{\cfrac{6}{5}}} + C$$
  • B. $$\dfrac{5}{{24}}{\left( {1 - \dfrac{1}{{{x^4}}}} \right)^{\cfrac{6}{5}}} + C$$
  • C. none of these
  • D. $$ - \dfrac{5}{{24}}{\left( {\dfrac{1}{{{x^4}}} - 1} \right)^{\cfrac{6}{5}}} + C$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Medium
$$\int \sqrt {1 + \sin x}dx =$$
  • A. $$\dfrac {1}{2}\left (\sin \dfrac {x}{2} + \cos \dfrac {x}{2}\right ) + c$$
  • B. $$\dfrac {1}{2}\left (\sin \dfrac {x}{2} - \cos \dfrac {x}{2}\right ) + c$$
  • C. $$2\sqrt {1 + \sin x} + c$$
  • D. $$-2\sqrt {1 - \sin x} + c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Passage Medium
Consider two differentiable functions $$f(x), g(x)$$ satisfying $$\displaystyle 6\int f(x)g(x)dx=x^{6}+3x^{4}+3x^{2}+c$$ & $$\displaystyle 2 \int \frac {g(x)dx}{f(x)}=x^{2}+c$$. where $$\displaystyle f(x)>0    \forall  x \in  R$$

On the basis of above information, answer the following questions :

Asked in: Mathematics - Limits and Derivatives


1 Verified Answer | Published on 17th 08, 2020

View Answer