Mathematics

If $$\int \left( \left (\dfrac{x}{e}\right) ^x +\left(\dfrac{e}{x} \right)^x\right)$$ $$\ln x .dx= A \left(\dfrac{x}{e} \right)^x + B\left(\dfrac{e}{x}\right) ^x +c $$ then $$A+ B=$$


ANSWER


View Full Answer

Its FREE, you're just one step away


One Word Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86
Enroll Now For FREE

Realted Questions

Q1 Single Correct Hard
Solve :
$$ \displaystyle \int { \frac { x+4 }{ { x }^{ 3 }+3{ x }^{ 2 }-10x } dx } $$
  • A. $$ \displaystyle \frac { 2 }{ 5 } \ln { \left| x \right| } -\frac { 3 }{ 7 } \ln { \left| x-2 \right| } +\frac { 1 }{ 35 } \ln { \left| x+5 \right| } +c$$
  • B. $$ \displaystyle \frac { 2 }{ 5 } \ln { \left| x \right| } +\frac { 3 }{ 7 } \ln { \left| x-2 \right| } +\frac { 1 }{ 35 } \ln { \left| x+5 \right| } +c$$
  • C. $$ \displaystyle -\frac { 2 }{ 5 } \ln { \left| x \right| } -\frac { 3 }{ 7 } \ln { \left| x-2 \right| } -\frac { 1 }{ 35 } \ln { \left| x+5 \right| } +c$$
  • D. $$ \displaystyle -\frac { 2 }{ 5 } \ln { \left| x \right| } +\frac { 3 }{ 7 } \ln { \left| x-2 \right| } -\frac { 1 }{ 35 } \ln { \left| x+5 \right| } +c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Hard

$$\displaystyle \int_{0}^{\pi/2}\frac{\sin \mathrm{x}\mathrm{d}\mathrm{x}}{(\sin \mathrm{x}+\cos \mathrm{x})^{2}}=$$
  • A. $$\sqrt{2}\log(\sqrt{2}+1)$$
  • B. $$2\log(\sqrt{2}+1)$$
  • C. $$\displaystyle \frac{1}{2\sqrt{2}}log(\sqrt{2}+1)$$
  • D. $$\displaystyle \frac{1}{\sqrt{2}}\log(\sqrt{2}+1)$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Subjective Medium
Evaluate $$\displaystyle \int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\dfrac{{\cos x}}{{1 + {e^x}}}} dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Hard
$$\displaystyle \int_{0}^{4}\frac{(y^2-4y+5)\sin (y-2)dy}{[2y^2-8y+11]}$$ is equal to
  • A. 2
  • B. -2
  • C. none of these
  • D.

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Passage Medium
Consider two differentiable functions $$f(x), g(x)$$ satisfying $$\displaystyle 6\int f(x)g(x)dx=x^{6}+3x^{4}+3x^{2}+c$$ & $$\displaystyle 2 \int \frac {g(x)dx}{f(x)}=x^{2}+c$$. where $$\displaystyle f(x)>0    \forall  x \in  R$$

On the basis of above information, answer the following questions :

Asked in: Mathematics - Limits and Derivatives


1 Verified Answer | Published on 17th 08, 2020

View Answer