Mathematics

# if $\int f(x) dx = f(x)$, then $\int {\left(\dfrac{f(x)}{f'(x)}\right)}$. dx is equal to

x + c

##### SOLUTION
$\displaystyle\int f(x)dx=f(x)$
Differentiating on both sides
$f(x)=f'(x)$
$\dfrac{f(x)}{f'(x)}=1$
Applying integral on both sides
$\displaystyle\int \dfrac{f(x)}{f'(x)}dx=\displaystyle\int dx=x+c$.

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Subjective Medium
Use the substitution $u={ e }^{ x }$ to evaluate
$\displaystyle \int _{ 0 }^{ 1 }{ \sec { hx } } dx$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
If $I=\displaystyle \int _{0}^{1}\dfrac{\tan{x}}{\sqrt{x}}\ dx$ then
• A. $I > \dfrac{2}{3}$
• B. $I < \dfrac{5}{9}$
• C. $I < \dfrac{1}{3}$
• D. $I < \dfrac{2}{3}$

1 Verified Answer | Published on 17th 09, 2020

Q3 One Word Medium
Number of real solution of the given equation for $x$, $\int x^{2}\ e^{x}dx=0$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
Evaluate$\displaystyle\int^{\pi/4}_0\dfrac{e^{\tan x}}{\cos^2x}dx$
• A. $(e+1)$
• B. $\left(\dfrac{1}{e}+1\right)$
• C. $\left(\dfrac{1}{e}-1\right)$
• D. $(e-1)$

Evaluate $\int {\dfrac{{dx}}{{\sqrt {x + 1} \, - \sqrt x }}}$