Mathematics

If $$\int { \frac { dx }{ { x }^{ 3 }{ (x-1) }^{ 1/2 } }  } =\frac { \sqrt { x-1 } (3x+2) }{ { 4x }^{ 2 } } +K{ tan }^{ -1 }\sqrt { x-1 } +c$$ then the valuie of K is -


ANSWER

1/2


View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86
Enroll Now For FREE

Realted Questions

Q1 Subjective Medium
$$\int {{{dx} \over {{x^4} - 1}}} $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Medium
$$\displaystyle \int \dfrac{2x\log(1+x^2)}{1+x^2}dx$$
  • A. $$\log(1+x^2)+c$$
  • B. $$2\log(1+x^2)+c$$
  • C. none of these
  • D. $$\dfrac{[\log(1+x^2)]^2}{2}+c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Medium
Let $$f\left( x \right) = \sin 2x\,\sin \left( {\frac{\pi }{2}\cos x} \right)\,\,and\,\,g\left( x \right) = \frac{{f\left( x \right)}}{{2x - \pi }}$$
$$\int_0^\pi  {f\left( x \right)dx = } $$
  • A. $$\frac{8}{\pi }$$
  • B. $$\frac{8}{{{\pi ^2}}}$$
  • C. $$\frac{{16}}{{{\pi ^2}}}$$
  • D.

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Medium
Compute the integral $$\displaystyle \int_{1}^{\sqrt{3}}\frac{\sqrt{1+x^{2}}}{x^{2}}dx$$
  • A. $$\displaystyle \frac{2}{\sqrt{3}}+\ln\frac{2+\sqrt{3}}{1+\sqrt{3}}$$
  • B. $$\displaystyle \sqrt{2}-\frac{\sqrt 2}{{3}}+\ln\frac{2+\sqrt{3}}{1-\sqrt{3}}$$
  • C. $$\displaystyle \sqrt{2}+{2}-\ln\frac{2+\sqrt{3}}{1+\sqrt{3}}$$
  • D. $$\displaystyle \sqrt{2}-\frac{2}{\sqrt{3}}+\ln\frac{2+\sqrt{3}}{1+\sqrt{3}}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Single Correct Medium
$$\int _ { 0 } ^ { 4 } \frac { \sin x ^ { 2 } d x } { \sin ( x - 4 ) ^ { 2 } + \sin x ^ { 2 } }$$ is equal to
  • A. 4
  • B. 8
  • C. 16
  • D. 2

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer