Mathematics

If $$\int _{ 0 }^{ k }{ \frac { dx }{ 2+8{ x }^{ 2 } } =\frac { \pi  }{ 16 }  } $$ then k=


ANSWER

$$1$$


View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84
Enroll Now For FREE

Realted Questions

Q1 Single Correct Hard
$$\int \left [\displaystyle \frac {\sqrt{x^2\, +\, 1}\, [ln(x^2\, +\, 1)\, -\, 2\, ln\, x]}{x^4} \right ]$$
  • A. $$\displaystyle \frac {(x^2\, -\, 1)\, \sqrt{x^2\, -\, 1}}{9x^3}\, \left [2\, -\, 3\, ln\, \left (1\, +\, \displaystyle \frac {1}{x^2} \right ) \right ]$$
  • B. $$\displaystyle \frac {(x^2\, -\, 1)\, \sqrt{x^2\, -\, 1}}{9x^3}\, \left [2\, +\, 3\, ln\, \left (1\, +\, \displaystyle \frac {1}{x^2} \right ) \right ]$$
  • C. $$\displaystyle \frac {(x^2\, -\, 1)\, \sqrt{x^2\, +\, 1}}{9x^3}\, \left [2\, +\, 3\, ln\, \left (1\, +\, \displaystyle \frac {1}{x^2} \right ) \right ]$$
  • D. $$\displaystyle \frac {(x^2\, +\, 1)\, \sqrt{x^2\, +\, 1}}{9x^3}\, \left [2\, -\, 3\, ln\, \left (1\, +\, \displaystyle \frac {1}{x^2} \right ) \right ]$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Medium
The value of $$\int _{ 0 }^{ \pi /2 }{ \cfrac { \sin { x } -\cos { x }  }{ 1+\sin { x } \cos { x }  }  } dx$$ is ____
  • A. $$\cfrac{\pi}{2}$$
  • B. $$\cfrac{\pi}{4}$$
  • C. $$\pi$$
  • D. $$0$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Multiple Correct Hard
If $$\displaystyle \int x\log \left ( 1+x^{2} \right )dx=\phi \left ( x \right ).\log \left ( 1+x^{2} \right )+\Psi \left ( x \right )+c$$ then
  • A. $$\displaystyle \Psi \left ( x \right )=\frac{1+x^{2}}{2}$$
  • B. $$\displaystyle \phi \left ( x \right )=-\frac{1+x^{2}}{2}$$
  • C. $$\displaystyle \phi \left ( x \right )=\frac{1+x^{2}}{2}$$
  • D. $$\displaystyle \Psi \left ( x \right )=-\frac{1+x^{2}}{2}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Subjective Medium
Find the value of $$\displaystyle \int _{0}^{2}|1-x|\ dx$$.

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Subjective Medium
$$\int \frac{x}{x^2 + a^2} \;dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer