Mathematics

If $$\int _{ 0 }^{ a }{ \quad  } \frac { dx }{ \sqrt { x+a } +\sqrt { x }  } =\int _{ 0 }^{ \pi /8 }{ \frac { 2\tan { \theta  }  }{ \sin { 2\theta  }  } d\theta  } ,\quad then\quad value\quad of\quad 'a'\quad is\quad equal\quad to\quad \left( a\quad >\quad 0 \right) $$


ANSWER

$$\frac { 3 }{ 4 } $$


View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84
Enroll Now For FREE

Realted Questions

Q1 Single Correct Medium
The value of the integral $$\displaystyle \int_{0}^{3}\displaystyle \frac{dx}{\sqrt{x+1}+\sqrt{5x+1}}$$ is
  • A. $$11/15$$
  • B. $$14/15$$
  • C. $$2/5$$
  • D. none of these

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Medium
Evaluate:$$\displaystyle\int \frac{cos\,x}{\sqrt{9sin^{2}x-1}}dx $$
  • A. $$ \log\left | 3 \sin\,x+\sqrt{9 \sin^{2}x-1} \right |+C $$
  • B. $${3} \log\left | 3 \sin\,x+\sqrt{9 \sin^{2}x-1} \right |+C $$
  • C. none of these
  • D. $$\dfrac{1}{3} \log\left | 3 \sin\,x+\sqrt{9 \sin^{2}x-1} \right |+C $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 One Word Hard
If $$\displaystyle  \int_{0}^{1}\frac{dx}{(1+x)(2+x)\sqrt{x(1-x)}}=\frac{\pi A}{\sqrt{6}(\sqrt{3}+1) (157)} $$, then $$A$$ is equal to

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Subjective Medium
Evaluate $$\displaystyle \int_{0}^{1}{}{(2x^2 +x+1)}dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Passage Medium
Consider two differentiable functions $$f(x), g(x)$$ satisfying $$\displaystyle 6\int f(x)g(x)dx=x^{6}+3x^{4}+3x^{2}+c$$ & $$\displaystyle 2 \int \frac {g(x)dx}{f(x)}=x^{2}+c$$. where $$\displaystyle f(x)>0    \forall  x \in  R$$

On the basis of above information, answer the following questions :

Asked in: Mathematics - Limits and Derivatives


1 Verified Answer | Published on 17th 08, 2020

View Answer