Mathematics

If $$I=\int \dfrac{\sin2x}{(3+4\cos x)^3}dx$$ then $$I$$ is equal to


ANSWER

$$\dfrac{3+8 \cos x}{16(3+4 \cos x)^2}+C$$


View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84
Enroll Now For FREE

Realted Questions

Q1 Single Correct Hard
The integral $$\displaystyle  \int (1+x-\displaystyle \frac{1}{x})e^{x+\frac{1}{x}} dx $$ is equal to 
  • A. $$ (x-1)e^{x+ \frac{1}{x}} +c $$
  • B. $$ (x+1)e^{x+\frac{1}{x}} +c $$
  • C. $$ -xe^{x+\frac{1}{x}} +c $$
  • D. $$ xe^{x+\frac{1}{x}} +c $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Medium
The value of $$\displaystyle\int_{-1}^1{\left(\frac{x^2+\sin{x}}{1+x^2}\right)dx}$$, is equal to
  • A. $$2-\pi$$
  • B. $$\pi-2$$
  • C. none of these
  • D. $$\displaystyle2-\frac{\pi}{2}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Medium
Evaluate $$\displaystyle \int\frac{\sqrt{1+\sqrt{x}}}{\sqrt{x}}dx$$
  • A. $$\displaystyle \dfrac { 3{ \left( \sqrt { x } +1 \right) }^{ \frac { 4 }{ 3 } } }{ 4 } +c$$
  • B. $$\displaystyle \dfrac { { \left( \sqrt { x } +1 \right) }^{ \frac { 4 }{ 3 } } }{ 4 } +c$$
  • C. $$\displaystyle \dfrac { { \left( \sqrt { x } +1 \right) }^{ \frac { 2 }{ 3 } } }{ 3 } +c$$
  • D. $$\displaystyle \dfrac { 4{ \left( \sqrt { x } +1 \right) }^{ \frac { 3 }{ 2 } } }{ 3 } +c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Medium
$$\int {\dfrac{{dx}}{{x\left( {{x^n} + 1} \right)}}} $$ is equal to
  • A. $$\frac{1}{n}\log \left( {\frac{{{x^n}}}{{{x^n} + 1}}} \right)$$
  • B. $$\log \left( {\frac{{{x^n}}}{{{x^n} + 1}}} \right)$$
  • C. None of these
  • D. $$\frac{1}{n}\log \left( {\frac{{{x^n} + 1}}{{{x^n}}}} \right)$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Subjective Medium
Evaluate $$\displaystyle \int x^{2}e^{x}dx$$.

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer