Mathematics

# If $I=\int _{ 0 }^{ 2\pi }{ { sin }^{ 2 }xdx }$, then

$I=2\int _{ 0 }^{ 2\pi }{ { sin }^{ 2 }xdx }$

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Single Correct Medium
lf $I_{n}=\displaystyle \int(\log x)^{n}dx$, then $I_{6}+6I_{5}=$
• A. $x(\log x)^{5}$
• B. $-x(\log x)^{5}$
• C. $-x(\log x)^{6}$
• D. $x(\log x)^{6}$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Hard
$\int { \sqrt { tanx } dx }$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Hard
If $\displaystyle\int xe^{-5x^{2}}\sin4x^{2}dx=e^{-5x^{2}} (A \sin4x^{2}+B\cos4x^{2})+C$, then $A+B$
• A. $-\dfrac{1}{66}$
• B. $\dfrac{1}{66}$
• C. $-\dfrac{7}{66}$
• D. $-\dfrac{9}{66}$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
Find the value $\displaystyle\int\limits_{-\dfrac{\pi}{2}}^{\dfrac{\pi}{2}} \sin^{2017}x\cos ^{2018}x\ dx$.

Evaluate : $\displaystyle \int { \dfrac { 1 }{ { 2x }^{ 2 }+x+1 } } dx$