Mathematics

If $$I=\displaystyle\int _{ 8 }^{ 15 }{ \dfrac { dx }{ \left( x-3 \right) \sqrt { x+1 }  }  } $$, then $$I$$ equals 


ANSWER

$$\dfrac{1}{2}\log\dfrac{5}{3}$$


View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86
Enroll Now For FREE

Realted Questions

Q1 Single Correct Hard
$$\int \dfrac {dx}{(x - 1)\sqrt {x^{2} - 1}} =$$
(c is a constant)
  • A. $$-\sqrt {\dfrac {x - 1}{x + 1}} + C$$
  • B. $$\sqrt {\dfrac {x - 1}{x^{2} + 1}} + C$$
  • C. $$\sqrt {\dfrac {x^{2} + 1}{x - 1}} + C$$
  • D. $$-\sqrt {\dfrac {x + 1}{x - 1}} + C$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Subjective Medium
Evaluate the following definite integral:
$$\displaystyle \int _{\pi /6}^{\pi /4} \csc x \ dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Medium
The value of $$\displaystyle \underset{0}{\overset{x}{\int}} \dfrac{(t - |t|)^2}{(1 + t^2)} dt$$ is equal to 
  • A. $$0 \, if \, x > 0$$
  • B. $$\ln ( 1 + x^3) \, \ \text{if} \, x > 0 $$
  • C. $$4(x + \tan^{-1} x ) \, \text{if} \, x < 0$$
  • D. $$4(x - \tan^{-1} x), \, \ \text{if} \, x < 0$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Subjective Medium
Evaluate: $$\int\limits_0^\pi  {\cos }(2x)$$.$$\log\sin x\;dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Single Correct Medium
$$\int { (\cfrac { { 2 }^{ x }-5^{ x } }{ 10^{ x } } )dx } $$ is equal to __________________.
  • A. $$\cfrac { { 2 }^{ x } }{ \log _{ e }{ 2 } } -\cfrac { 5^{ x } }{ \log _{ e }{ 5 } } +c$$
  • B. $$\cfrac { { 2 }^{ x } }{ \log _{ e }{ 2 } } +\cfrac { 5^{ x } }{ \log _{ e }{ 5 } } +c$$
  • C. $$\cfrac { { 5 }^{ -x } }{ \log _{ e }{ 5 } } -\cfrac { 2^{ -x } }{ \log _{ e }{ 2 } } +c$$
  • D. $$\cfrac { { 2 }^{ -x } }{ \log _{ e }{ 2 } } -\cfrac { 5^{ -x } }{ \log _{ e }{ 5 } } +c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer