Mathematics

If $${ I }_{ n }=\int { { x }^{ n }.{ e }^{ cx } } dx$$ for $$n\ge 1$$, then $$c.I_{n}+n.I_{n-1}$$ is equal to


ANSWER

$$x^{n}e^{cx}$$


SOLUTION
View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86
Enroll Now For FREE

Realted Questions

Q1 Single Correct Medium
If $$\displaystyle f\left ( a+b-x \right )= f\left ( x \right )$$ then $$\displaystyle \int_{a}^{b}xf\left ( x \right )dx$$ is equal to
  • A. $$\displaystyle \frac{b-a}{2}\int_{a}^{b}f\left ( x \right )dx$$
  • B. $$\displaystyle \frac{a+b}{2}\int_{a}^{b}f\left ( a+b-x \right )dx$$
  • C. $$\displaystyle \frac{a+b}{2}\int_{a}^{b}f\left ( b-x \right )dx$$
  • D. $$\displaystyle \frac{a+b}{2}\int_{a}^{b}f\left ( x \right )dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Medium
$$\displaystyle \int\frac{x-\sin x}{1-\cos x}dx=$$
  • A. $$log |1-Cosx | +c$$
  • B. $$log | x - sin x | +c$$
  • C. $$x\displaystyle \tan\frac{x}{2}+c$$
  • D. $$-x\displaystyle \cot\frac{x}{2}+c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Hard
The value of the integral $$\int _ { 0 } ^ { \pi / 2 } \frac { 1 + 2 \cos x } { ( 2 + \cos x ) ^ { 2 } } d x$$ is
  • A. $$\frac { 1 } { 4 }$$
  • B. $$\frac { 1 } { 2 }$$
  • C. $$\frac { -1 } { 4 }$$
  • D. $$\frac { -1 } { 2 }$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 One Word Medium
Solve $$\int\limits_{\pi /2}^{3\pi /2} {[2\sin x]dx} $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Passage Hard
Given that for each $$\displaystyle a  \in (0, 1), \lim_{h \rightarrow 0^+} \int_h^{1-h} t^{-a} (1 -t)^{a-1}dt$$ exists. Let this limit be $$g(a)$$ 
In addition, it is given that the function $$g(a)$$ is differentiable on $$(0, 1)$$
Then answer the following question.

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer