Mathematics

# If ${ I }_{ 1 }=\int _{ 0 }^{ \pi /2 }{ \cos(\sin x)dx, { I }_{ 2 }= } \int _{ 0 }^{ \pi /2 }{ \sin(\cos x)dx }$ and ${ I }_{ 3 }=\int _{ 0 }^{ \pi /2 }{ \cos xdx }$, then

##### ANSWER

${ I }_{ 1 }>{ I }_{ 3 }>{ I }_{ 2 }$

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Subjective Medium
Solve :
$\displaystyle \int x \sqrt{x-1 dx}$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
$\int \dfrac{1+x}{\sqrt{1-{x}^{2}}}$dx

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Hard
$\displaystyle \int\frac{\sin^{-1}x-\cos^{-1}x}{\sin^{-1}x+\cos^{-1}x}dx=$
• A. $\log[\sin^{-1}x+\cos^{-1}x]+c$
• B. $\dfrac{4}{\pi}[x\sin^{-1}x+\sqrt{1-x^{2}}]+c$
• C. $\dfrac{4}{\pi}[x\sin^{-1}x-\sqrt{1-x^{2}}]+C$
• D. $\displaystyle \frac{4}{\pi}[x\sin^{-1}x+\sqrt{1-x^{2}}]-x+c$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Hard
Evalutate the following:$\int\limits_{ - \frac{\pi }{4}}^{\frac{\pi }{4}} {\frac{{x + \frac{\pi }{4}}}{{2 - \cos 2x}}} dx.$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q5 Multiple Correct Hard
$\displaystyle \int \displaystyle \frac{x^{2}+\cos ^{2}x}{1+x^{2}}\csc^{2}xdx$ is equal to:
• A. $\cot x-\cot ^{-1}x+c$
• B. $e^{\ln\tan^2x}+\cos x +c$
• C. $c-\cot x+\cot ^{-1}x$
• D. $- \tan^{-1}x-\displaystyle \frac{\csc x}{\sec x}+c$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020