Mathematics

# If $f(x)=\displaystyle\int_{0}^{x}t\sin tdt$, then $f'(x)$ is

$x\sin x$

##### SOLUTION
$f(x)=\displaystyle\int_{0}^{x}t.\sin t.dt$

$Using \space Leibniz \space Rule \space$

$f'(x)=\left (tsint\right)_0^x =xsinx$

$\therefore$ Answer is $(B)$

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 109

#### Realted Questions

Q1 Subjective Medium
Evaluate the following integrals:
$\displaystyle \int { \sec ^{ 4 }{ 2x } } dx$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Hard
Evaluate the given integral.
$\displaystyle \int { { e }^{ x } } \left( \cfrac { x-1 }{ (x+1)^{ 3 } } \right) dx$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
Evaluate $\displaystyle \int e^x \cdot \frac {x}{(1+x)^2}dx$
• A. $e^x \cdot \dfrac {1}{x}+C$
• B. $e^x \cdot tan\dfrac {x}{2}+C$
• C. None of these
• D. $e^x \cdot \dfrac {1}{(1+x)}+C$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
Evaluate $\int (x-3) \sqrt{x^2+3x-18}dx$

$\int_{}^{} {\frac{{ - 1}}{{\sqrt {1 - {x^2}} }}dx}$