Mathematics

If $f(x)=\begin{vmatrix} \cos { x } & 1 & 0 \\ 1 & 2\cos { x } & 1 \\ 0 & 1 & 2\cos { x } \end{vmatrix}$ then $\displaystyle\int _{ 0 }^{ \pi /2 }{ f\left( x \right) } dx$ is equal to

$1/4$

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

Realted Questions

Q1 Single Correct Medium
$\int \frac{x^{4}-2}{x^{2} \sqrt{x^{4}+x^{2}+2}} d x$
• A. $\frac{\sqrt{x^{4}+x^{2}+2}}{|x|}+c$
• B. $\frac{\sqrt{x^{4}+1}}{|x|}+c$
• C. $\frac{\sqrt{x^{4}+2}}{|x|}+c$
• D. $\frac{\sqrt{x^{4}+x^{2}+1}}{|x|}+C$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Solve :
$\displaystyle \int_{0}^{\pi}{\sin^{3}x dx}$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Hard
let $f(x)=(x+1)^{2}+\frac{1}{x}$ then the value of $\int_{-2}^{1}f(x)(-x)dx$
• A. is equal to $-\frac{81}{10}$
• B. is equal to $\frac{81}{10}$
• C. does not exist
• D. is equal to $\dfrac{-15}{4}$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Hard
$\displaystyle \int { \sqrt { \sin { x } } }$dx

$\int \frac{x}{x^2 + a^2} \;dx$