Mathematics

# If $f(x) \begin{vmatrix} x & cosx & e^{ { x^{ 2 } } } \\ sin\quad x & x^{ 2 } & sec\quad x \\ tan\quad x & x^ 4 & 2x^ 2 \end{vmatrix}$ then $\displaystyle \int_{-\pi/2}^{\pi/2}f(x)dx=$

##### ANSWER

$0$

##### SOLUTION
$f(x) = \begin{vmatrix} x& \cos x & e^{x^2}\\ \sin x & x^2 &\sec x\\\tan x& x^4 & 2x^2 \end{vmatrix}$

$=x[2x^4-x^4\sec x]-\cos x[2x^2\sin x +\sec x \tan x]+e^{x^2}[x^4\sin x - x^2\tan x]$

$=x^5[2-\sec x]-2x^2\sin x \cos x + \tan x+e^{x^2}x^4\sin x -e^{x^2}\tan x$

$\displaystyle \int_{-\pi/2}^{\pi/2} [x^5[2-\sec x]-2x^2 \sin x \cos x + \tan x + e^{x^2}x^4\sin x - e^{x^2}x^2\tan x]$

$\left[ \dfrac{2x^6}{6}= x^5 \sec x - 2x^2\sin x \cos x - \tan x + e^{x^2}x^4\sin x - e^{x^2}x^2\tan x\right]$

$=0$

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 111

#### Realted Questions

Q1 Single Correct Hard
Evaluate the following integrals:$\displaystyle \int \sqrt{3x^{2}+4}dx$
• A. $\dfrac{x}{2}.\sqrt{3x+4}+\dfrac{2}{\sqrt{3}} \log\left | \sqrt{3}x+\sqrt{3x^{2}+4} \right |+C$
• B. $\dfrac{x}{2}.\sqrt{3x^{2}+4}+\dfrac{4}{\sqrt{3}} \log\left | \sqrt{3}x+\sqrt{3x^{2}+4} \right |+C$
• C. None of these
• D. $\dfrac{x}{2}.\sqrt{3x^{2}+4}+\dfrac{2}{\sqrt{3}} \log\left | \sqrt{3}x+\sqrt{3x^{2}+4} \right |+C$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
If $f\left ( n \right )= \left [ \left ( n+1 \right )\left ( n+2 \right )...\left ( n+n \right ) \right ]^{1/n}$, then $\lim_{n\rightarrow \infty }f\left ( n \right )$ equals
• A. $e$
• B. $1/e$
• C. $2/e$
• D. $4/e$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
$\displaystyle\int \dfrac{1}{1+e^x}dx$ is equal to?
• A. $log_e\left(\dfrac{e^x+1}{e^x}\right)+c$
• B. $log_e\left(\dfrac{e^x-1}{e^x}\right)+c$
• C. $log_e\left(\dfrac{e^x}{e^x-1}\right)+c$
• D. $log_e\left(\dfrac{e^x}{e^x+1}\right)+c$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Hard
Let $f$ be a positive function. If $\displaystyle I_{1}=\int_{1-k}^{k}xf{x(1-x)}dx,\ I_{2}=\int_{1-k}^{k}f{x(1-x)}dx,$ where $2k-1>0,$ then $\displaystyle \frac{I_{1}}{I_{2}}$ is
• A. $2$
• B. $k$
• C. $1$
• D. $\displaystyle \frac{1}{2}$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q5 Subjective Easy
Evaluate:
$\int_{}^{} {\frac{{ - 1}}{{\sqrt {1 - {x^2}} }}dx}$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020