Mathematics

# If $f(x)={ \{ }_{ 0, \quad \quad \quad |x|>1\quad \quad \quad \quad \quad \quad \quad \quad \quad }^{ 1-|x|,\quad \quad |x|<1 }$ and $g(x)=f(x-1)+f(x+1)$ then $\int _{ 0 }^{ 3 }{ g(x)dx }$ is equal to

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Single Correct Medium
If $f(x)={ x }^{ 3 }+x,$then $\int _{ 1 }^{ 2 }{ f\left( x \right) dx+2\int _{ 1 }^{ 5 }{ { f }^{ -1 }\left( 2x \right) dx } }$
• A. 9
• B. 8
• C. 18
• D. 21

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Evaluate the following integral:
$\displaystyle\int_{0}^{\pi}\cos^{2}x\ dx$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Find :
$\int { \dfrac { { sec }^{ 2 }x }{ { tan }^{ 2 }x+4 } dx }$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Hard
Evaluate : $\displaystyle {\int}^{2\pi}_0 \dfrac{1}{1+e^{\sin x}}$

$\int \left( {4x + 2} \right)\sqrt {{x^2} + x + 1} dx$