Mathematics

If $$f$$ is continuous on $$[0, 1]$$ such that $$f(x)+f\left(x+\dfrac{1}{2}\right)=1$$ and $$\displaystyle \int_{0}^{1}{f(x)dx}=k$$, then value of $$2K$$ is


ANSWER

$$1$$


View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 109
Enroll Now For FREE

Realted Questions

Q1 Single Correct Medium
the value of the difinite $$\int _{ 1 }^{ e }{ \left( \left( x+1 \right) { e }^{ x }lnx \right) dx\quad is- } $$
  • A. $${ e }^{ e+1 }$$
  • B. $${ e }^{ e }\left( e-1 \right) $$
  • C. $${ e }^{ e }\left( e-1 \right) +e$$
  • D. e

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Subjective Medium
Integrate:

$$\displaystyle\int {\dfrac{{{{\left( {x + a} \right)}^2}}}{{\sqrt x }}dx} $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Medium
$$\displaystyle \int { \cfrac { dx }{ \sqrt { 2{ e }^{ x }-1 }  }  } $$ equals to
  • A. $$\sec ^{ -1 }{ \sqrt { 2{ e }^{ x } } } +c$$
  • B. $$\sec ^{ -1 }{ \left( \sqrt { 2 } { e }^{ x } \right) } +c$$
  • C. $$2\sec ^{ -1 }{ \left( \sqrt { 2 } { e }^{ x } \right) } +c$$
  • D. $$2\sec ^{ -1 }{ \sqrt { 2{ e }^{ x } } } +c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Hard
If $$\displaystyle I= \int_{0}^{1}\frac{x dx}{8+x^{3}}$$ then the smallest interval in which $$I$$ lies is
  • A. $$\displaystyle \left ( 0,\frac{1}{8} \right )$$
  • B. $$\displaystyle \left ( 0,\frac{1}{10} \right )$$
  • C. $$\displaystyle \left ( 0,\frac{1}{7} \right )$$
  • D. $$\displaystyle \left ( 0,\frac{1}{9} \right )$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Subjective Medium
Evaluate: $$\displaystyle\int {\frac{1}{{{a^x}{b^x}}}} \,dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer