Mathematics

If $$\displaystyle \int _0^{\pi/2} \sin x \cos x dx $$ is equal to:


ANSWER

$$\dfrac 1 2$$


SOLUTION
$$\displaystyle \int _0^{\pi/2} \sin x \cos x dx $$

$$\sin x=t\implies \cos x dx=dt$$

$$x\to 0\to \dfrac \pi 2$$

$$t\to 0\to 1$$

$$\Rightarrow \displaystyle \int _0^{\pi/2} t dt$$

$$\Rightarrow\left.\dfrac {t^2}2\right|^1_0$$

$$\Rightarrow\dfrac 12-0=\dfrac 12$$  
View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86
Enroll Now For FREE

Realted Questions

Q1 Single Correct Medium
Antiderivation of $$\dfrac {\sin^{2}x}{1+\sin^{2}x}$$ w.r.t is:
  • A. $$x-\dfrac {2}{\sqrt {2}}arc\tan(\sqrt {2}\tan x)+C$$
  • B. $$x+\sqrt {2} arc\tan(\sqrt {2}\tan x)+C$$
  • C. $$x-\sqrt {2} arc\tan(\sqrt {2}\tan x)+C$$
  • D. $$x-\dfrac {\sqrt {2}}{2} arc\tan(\sqrt {2}\tan x)+C$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Medium
$$\displaystyle \frac{3\mathrm{x}^{2}+1}{(\mathrm{x}^{2}+1)^{3}}=\frac{\mathrm{A}\mathrm{x}+\mathrm{B}}{(\mathrm{x}^{2}+1)}+\frac{\mathrm{C}\mathrm{x}+\mathrm{D}}{(\mathrm{x}^{2}+1)^{2}}+\frac{\mathrm{E}\mathrm{x}+\mathrm{F}}{(\mathrm{x}^{2}+1)^{3}}$$ then $$A + C + E + F =$$
  • A. 10
  • B. -10
  • C. 2
  • D. -2

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Medium
The value of $$I=\displaystyle\int_{\dfrac{-\pi}{2}}^{\dfrac{\pi}{2}}|sin\,x|dx$$ is
  • A. $$0$$
  • B. $$-2$$
  • C. $$-2 < 1 < 2$$
  • D. $$2$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Subjective Medium
Solve:
$$\displaystyle \int{\dfrac{3x-7}{x+1}dx}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Single Correct Medium
$$\int { \log { \left( \log { x }  \right) +\dfrac { 1 }{ \log { x }  }  }  } dx$$
  • A. $$x\log { x } +c$$
  • B. $$x+c$$
  • C. $$None$$
  • D. $$x\log { \left( \log { x } \right) +c }$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer