Mathematics

If $$\displaystyle \int _{0}^{1}\cot^{-1}(1+x^{2}-x)dx=k\left(\dfrac {\pi}{4}-\log_{e}\sqrt {2}\right)$$, then the value of $$k$$ is equal to


ANSWER

$$1$$


View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 114
Enroll Now For FREE

Realted Questions

Q1 Single Correct Hard
Integrate 
$$\displaystyle\int {\dfrac{{dx}}{{\left( {x + 1} \right)\sqrt {2{x^2} + 3x + 1} }}} $$
  • A. $$ I=\left( \sqrt{\dfrac{2x+1}{1+x}} \right)+C $$
  • B. $$ I=2\left( \sqrt{\dfrac{2x-1}{1+x}} \right)+C $$
  • C. None of these
  • D. $$ I=2\left( \sqrt{\dfrac{2x+1}{1+x}} \right)+C $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Medium
$$\lim\limits_{n\to \infty}\dfrac{1^2+2^2+.....+n^2}{n^3}$$ is equal to
  • A. $$\infty$$
  • B. $$0$$
  • C. $$\dfrac{1}{2}$$
  • D. $$\dfrac{1}{3}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Subjective Medium
Integrate the rational function   $$\cfrac {x}{(x-1)(x-2)(x-3)}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Medium
$$\displaystyle \int { \frac { \cos { x } -\sin { x }  }{ \sqrt { 8-\sin { 2x }  }  } dx } $$ is equal to 
  • A. $$\sin ^{ -1 }{ \left( \sin { x } +\cos { x } \right) } +c$$
  • B. $$\cos ^{ -1 }{ \left( \sin { x } +\cos { x } \right) } +c$$
  • C. None of these
  • D. $$\displaystyle \sin ^{ -1 }{ \left[ \frac { 1 }{ 3 } \left( \sin { x } +\cos { x } \right) \right] } +c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Passage Hard
Let us consider the integral of the following forms
$$f{(x_1,\sqrt{mx^2+nx+p})}^{\tfrac{1}{2}}$$
Case I If $$m>0$$, then put $$\sqrt{mx^2+nx+C}=u\pm x\sqrt{m}$$
Case II If $$p>0$$, then put $$\sqrt{mx^2+nx+C}=u\pm \sqrt{p}$$
Case III If quadratic equation $$mx^2+nx+p=0$$ has real roots $$\alpha$$ and $$\beta$$, then put $$\sqrt{mx^2+nx+p}=(x-\alpha)u\:or\:(x-\beta)u$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer