Mathematics

If $\displaystyle \frac{\mathrm{x}^{4}+1}{(\mathrm{x}-1)(\mathrm{x}-2)}=\mathrm{A}\mathrm{x}^{2}+\mathrm{B}\mathrm{x}+\mathrm{C}-\frac{2}{\mathrm{x}-1}+\frac{17}{\mathrm{x}-2}$, then $\mathrm{C}=$

$7$

SOLUTION
In the equation
$\displaystyle \frac{x^{4}+1}{(x-1)(x-2)}=Ax^{2}+Bx+C-\frac{2}{x-1}+\frac{17}{x-2}$
put $x=0$
$\dfrac{1}{2}=C+24-\dfrac{17}{2}$
$c=7$
the value of $c=7$

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 105

Realted Questions

Q1 Single Correct Medium
Minimum value of $\displaystyle \int _{ A }^{ B }{ { (x }^{ 4 } } -\quad 2{ x }^{ 2 })\quad dx$ then value of (A,B) is
• A. $(0,\sqrt { 2 } )$
• B. $(\sqrt { 2 },4)$
• C. None
• D. $(\sqrt { -2 } ,\sqrt { 2 } )$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
If $I_n = \int_0^{\pi /4}\tan^n dx ,$ then $\dfrac {1}{I_2 + I_4} \dfrac {1}{I_3 + I_5} \dfrac {1}{I_4 + I_6}$ is :
• A. G.P.
• B. H.P.
• C. None of these
• D. A.P.

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Hard
$\int_{0}^{\infty}{\dfrac{\sin^{2} x}{x^{2}}dx}$ must be same as
• A. $(\int_{0}^{\infty}{\dfrac{\sin x}{x}dx})^{2}$
• B. $\int_{0}^{\infty}{\dfrac{\cos^{2} x}{x^{2}}dx}$
• C. $none\ of\ these$
• D. $\int_{0}^{\infty}{\dfrac{\sin x}{x}dx}$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Hard
$\displaystyle \int_{0}^{\pi/2}\dfrac{dx}{1+cosx}$

Consider two differentiable functions $f(x), g(x)$ satisfying $\displaystyle 6\int f(x)g(x)dx=x^{6}+3x^{4}+3x^{2}+c$ & $\displaystyle 2 \int \frac {g(x)dx}{f(x)}=x^{2}+c$. where $\displaystyle f(x)>0 \forall x \in R$