Mathematics

# If $\displaystyle \frac{3\mathrm{x}}{(\mathrm{x}-6)(\mathrm{x}+\mathrm{a})}$ $=\displaystyle \frac{2}{\mathrm{x}-6}+\frac{1}{\mathrm{x}+a}$ then $a=$

3

##### SOLUTION
$LHS=\dfrac{3x}{(x-6)(x+a)} RHS=\dfrac{2}{x-6}+\dfrac{1}{x+a}$
$=\dfrac{2(x+a)+(x-6)}{(x-6)(x+a)}$
$LHS=RHS$
$\Rightarrow 3x=2(x+a)+(x-6) -(1)$
keep $x=6$ we get in eqn (1)
$18=2(6+a)$
$a=3$

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 111

#### Realted Questions

Q1 Subjective Medium
Evaluate the integral   $\displaystyle \int_0^2\dfrac {dx}{x+4-x^2}$   using substitution.

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Evaluate the following definite integral:
$\displaystyle \int_{0}^{2}\dfrac {1}{4+x-x^2}dx$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
$\displaystyle \int\frac{1}{x\sin^{2}(\log x)}dx=$
• A. $\cot(\log x)+c$
• B. $-2\cot(\log x)+c$
• C. $2 \cot(\log x)+c$
• D. $-\cot(\log x)+c$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
Prove that $\displaystyle\int^{\pi/2}_0\dfrac{\sin^3x}{(\sin^3x+\cos^3x)}dx=\dfrac{\pi}{4}$.

Solve $\displaystyle\int \dfrac {x^{2}}{(x^{2}+1)(x^{2}+4)}dx$