Mathematics

# If $\displaystyle f\left ( x \right )= \left\{\begin{matrix}e^{\cos x}\cdot \sin x &for\left | x \right |\leq 2 \\2 &otherwise \end{matrix}\right.$ then $\displaystyle \int_{-2}^{3}f\left ( x \right )dx$ is equal to

2

##### SOLUTION
Given $f\left( x \right) =\begin{cases} { e }^{ \cos { x } }\sin { x } ,\quad \left| x \right| \le 2 \\ 2\quad \quad \quad \quad \quad \quad else \end{cases}$
$\therefore \int _{ -2 }^{ 2 }{ f\left( x \right) } dx+\int _{ 2 }^{ 3 }{ f\left( x \right) } dx=\int _{ -2 }^{ 2 }{ { e }^{ \cos { x } }\sin { x } dx } +\int _{ 2 }^{ 3 }{ 2 } dx$
$=0+2\left[ x \right] _{ 2 }^{ 3 }$  ($\because { e }^{ \cos { x } }\sin { x }$ is an odd function)
$=2\left[ 3-2 \right] =2\quad \left[ \because \int _{ -2 }^{ 3 }{ f\left( x \right) } dx=2 \right]$

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Subjective Hard
Solve : $\displaystyle \int ^{\cfrac{\pi}{2}}_{0} \frac{\sin^2 x}{\sin x+\cos x}$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
$\int \dfrac{1+x^2}{1+x^4}dx$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Hard
If $f\left( \cfrac { 3x-4 }{ 3x+4 } \right) =x+2$, then $\int { f(x) } dx$ is
• A. ${ e }^{ x+2 }\log { \left| \cfrac { 3x-4 }{ 3x+4 } \right| } +c$
• B. $\cfrac { 8 }{ 3 } \log { \left| 1-x \right| } +\cfrac { x }{ 3 } +c$
• C. ${ e }^{ \left[ \left( 3x-4 \right) /\left( 3x+4 \right) \right] }-\cfrac { { x }^{ 2 } }{ 2 } -2x+c$
• D. $-\cfrac { 8 }{ 3 } \log { \left| 1-x \right| } +\cfrac { 2 }{ 3 } x+c\quad$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
$\displaystyle\int \dfrac{x\ dx}{(x^2+a^2)(x^2+b^2)}$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q5 Passage Medium
Consider two differentiable functions $f(x), g(x)$ satisfying $\displaystyle 6\int f(x)g(x)dx=x^{6}+3x^{4}+3x^{2}+c$ & $\displaystyle 2 \int \frac {g(x)dx}{f(x)}=x^{2}+c$. where $\displaystyle f(x)>0 \forall x \in R$

On the basis of above information, answer the following questions :

Asked in: Mathematics - Limits and Derivatives

1 Verified Answer | Published on 17th 08, 2020