Mathematics

If $$\dfrac{d}{dx}\ f(x)=g(x)$$ for $$a\leq x\leq b$$ then $$\int_{b}^{a}f(x)g(x)dx$$ equals to:


ANSWER

$$\dfrac{[f(b)]^{2}-[f(a)]^{2}}{2}$$


View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84
Enroll Now For FREE

Realted Questions

Q1 Single Correct Hard
$$\int { \cfrac { dx }{ \sqrt { { x }^{ 2 }+6x+5 }  }  } =$$?
  • A. $$\log { \left| x+\sqrt { { x }^{ 2 }+6x+5 } \right| } +C\quad $$
  • B. $$\log { \left| x-\sqrt { { x }^{ 2 }+6x+5 } \right| } +C$$
  • C. none of these
  • D. $$\log { \left| \left( x+3 \right) +\sqrt { { x }^{ 2 }+6x+5 } \right| } +C$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Subjective Medium
If $$ \int\left(x^{2010}+x^{\text {804 }}+x^{402}\right)\left(2 x^{160 8}+5 x^{402}+10\right)^{1 / 402} d x $$
$$ =\dfrac{1}{10 a}\left(2 x^{2010}+5 x^{804}+10 x^{402}\right)^{a / 402} . $$ Then $$ (a-400) $$ is equal to

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Hard
If $$\displaystyle I= \int_{0}^{1}\frac{x dx}{8+x^{3}}$$ then the smallest interval in which $$I$$ lies is
  • A. $$\displaystyle \left ( 0,\frac{1}{8} \right )$$
  • B. $$\displaystyle \left ( 0,\frac{1}{10} \right )$$
  • C. $$\displaystyle \left ( 0,\frac{1}{7} \right )$$
  • D. $$\displaystyle \left ( 0,\frac{1}{9} \right )$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Medium
$$\displaystyle\int _ { 0 } ^ { \pi } \dfrac { x \sin x } { 1 + \cos ^ { 2 } x } d x =$$
  • A. $$\frac { \pi ^ { 2 } } { 2 }$$
  • B. $$\pi ^ { 2 }$$
  • C. $$0$$
  • D. $$\frac { \pi ^ { 2 } } { 4 }$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Subjective Medium
Evaluate :$$\displaystyle \int \dfrac{dx}{x(x^2+1)}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer