Mathematics

If $$\alpha ^{2}+\beta ^{2}+\gamma ^{2}=1$$, then highest integral value of $$\alpha \beta +\beta \gamma +\alpha \gamma $$ is


SOLUTION
$$\begin{array}{l} { \alpha ^{ 2 } }+{ \beta ^{ 2 } }+{ \gamma ^{ 2 } }=1 \\ { \left( { \alpha -\beta  } \right) ^{ 2 } }{ \left( { \beta -\gamma  } \right) ^{ 2 } }+{ \left( { \gamma -\alpha  } \right) ^{ 2 } }\ge 0 \\ 2\left[ { { \alpha ^{ 2 } }+{ \beta ^{ 2 } }-\alpha \beta -\beta \gamma -\gamma \alpha  } \right] \ge 0 \\ 1-\left( { \alpha \beta +\beta \gamma +\gamma \alpha  } \right) \ge 0 \\ \alpha \beta +\beta \gamma +\gamma \alpha -1\le 0 \\ \alpha \beta +\beta \gamma +\gamma \alpha 1 \\ \therefore \, \, Height\, \, { { int } }egral\, \, value\, \, is\, \, 1 \end{array}$$
View Full Answer

Its FREE, you're just one step away


Subjective Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84
Enroll Now For FREE

Realted Questions

Q1 Single Correct Medium
The value of $$\displaystyle \int_{0}^{\pi }\displaystyle \frac{dx}{1-2\alpha \cos x+\alpha ^{2}}$$ is
  • A. $$\displaystyle \frac{\pi }{1+\alpha ^{2}}$$ if $$\alpha > 1$$
  • B. $$\displaystyle \frac{\pi }{1+\alpha ^{2}}$$ if $$\alpha < 1$$
  • C. $$\displaystyle \frac{\pi }{\alpha ^{2}-1}$$ if $$\alpha < 1$$
  • D. $$\displaystyle \frac{\pi }{\alpha ^{2}-1}$$ if $$\alpha > 1$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Subjective Medium
Evaluate the integrals:
$$\displaystyle \int \dfrac{4x}{(2x^2+3)}dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Medium
$$\int_{0}^{\frac{1}{2}}\frac{xsin^{-1}x}{\sqrt{1-x^{2}}}dx$$ is equal to
  • A. $$\frac{1}{2}-\frac{\pi }{2\sqrt{3}}$$
  • B. $$\frac{1}{2}+\frac{\pi }{4\sqrt{3}}$$
  • C. $$\frac{1}{2}+\frac{\pi }{4\sqrt{3}}$$
  • D. $$\frac{1}{2}+\frac{\pi }{2\sqrt{3}}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Subjective Medium
Using integration, find the area of the triangle formed by negative $$x - axis$$ and tangent and normal to the circle $${x^2} + {y^2} = 9$$ at $$( - 1,2\sqrt 2 )$$.

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Subjective Medium
Solve $$\displaystyle\int \dfrac{x}{{{{\left( {x + 1} \right)}^2}}}dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer